分析 (Ⅰ)延长AD至E,使AD=DE,连接BE,CE,得出四边形ABEC是平行四边形;
利用余弦定理求出AE的长,即得中线AD;
(Ⅱ)先利用余弦定理求出BC的长,再利用角平分线定理求出BD的长,
最后利用余弦定理列出方程求出角平分线AD的值.
解答 解:(Ⅰ)延长AD至E,使AD=DE,连接BE,CE,如图所示,
△ABC中,AB=3,AC=1,且∠BAC=$\frac{2π}{3}$,![]()
由点D是BC的中点,得BD=CD,
∴四边形ABEC是平行四边形;
∴∠ABC=π-∠BAC=$\frac{π}{3}$,
∴AE2=AB2+BE2-2AB•BE2•cos∠ABE=32+12-2×3×1×cos$\frac{π}{3}$=7,
∴AE=$\sqrt{7}$∴AD=$\frac{1}{2}$AE=$\frac{\sqrt{7}}{2}$;
(Ⅱ)如图2所示
△ABC中,AB=3,AC=1,且∠BAC=$\frac{2π}{3}$,
∴BC2=AB2+AC2-2AB•AC•cos∠BAC=32+12-2×3×1×cos$\frac{2π}{3}$=13,
∴BC=$\sqrt{13}$;
又AD平分∠BAC,
∴$\frac{BD}{DC}$=$\frac{AB}{AC}$=$\frac{3}{1}$,
∴BD=$\frac{3}{4}$BC=$\frac{3}{4}$$\sqrt{13}$,
∴BD2=AB2+AD2-2AB•AD•cos∠BAD,即${(\frac{3}{4}\sqrt{13})}^{2}$=32+AD2-2×3•AD•cos$\frac{π}{3}$,
∴AD2-3AD+$\frac{27}{16}$=0;
解得AD=$\frac{3}{4}$或AD=$\frac{9}{4}$(不满足AD<AC,应舍去),
∴AD的值是$\frac{3}{4}$.
点评 本题考查了三角形的中线以及平分线的应用问题,也考查了正弦、余弦定理的应用问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(7)<f(6.5)<f(4.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(4.5)<f(6.5)<f(7) | D. | f(4.5)<f(7)<f(6.5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3-2$\sqrt{2}$ | B. | 3$+2\sqrt{2}$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{21}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com