精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若f(x)≥2ax,则a的取值范围是[-1,0].

分析 运用分段函数的图象画法,作出f(x)的图象,结合图象讨论,a>0,a≤0,利用数形结合以及直线和抛物线相切的条件:判别式为0,计算即可得到范围.

解答 解:作出函数f(x)的图象如图,
若a>0,则f(x)≥2ax不恒成立;
若a≤0,当直线y=2ax与y=x2-2x相切时,
即x2-2x=2ax,即x2-2(a+1)x=0,
则判别式△=4(a+1)2=0,
解得a=-1,
则要使f(x)≥2ax,则-1≤a≤0.
综上可得,a的范围是[-1,0].
故答案为:[-1,0].

点评 本题主要考查不等式恒成立问题,利用数形结合结合分段函数的图象和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是①③④.(写出所有正确条件的编号)
①a=b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若点P(x,y)在不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥1}\end{array}\right.$所表示的平面区域内,则原点O与点P距离的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x∈R|x2-4x<0},集合N={0,4},则M∪N=(  )
A.[0,4]B.[0,4)C.(0,4]D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)是定义在R上且f(x+2)=f(2-x),f(7-x)=f(7+x),在闭区间[0,7]上,使f(x)=0的x值仅为1和3.
(1)判断函数f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2016,2016]上根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$,则z=2x+y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=-$\sqrt{x+2}$(2≤x≤14),设其值域为集合A,集合B={x|y=lg[kx2+(2k-4)x+k-4],x∈R}.
(1)求集合A;
(2)若A∪B=B,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的公比为$-\frac{1}{2}$,则$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,AB=3,AC=1,且∠BAC=$\frac{2π}{3}$,点D是边BC上一点;
(Ⅰ)若点D是BC的中点,求AD的值;
(Ⅱ)若点D是角A的平分线与BC的交点,求AD的值.

查看答案和解析>>

同步练习册答案