精英家教网 > 高中数学 > 题目详情
16.平面直角坐标系内,到直线l:x=4的距离与到点F(1,0)距离之比为2的动点的轨迹为曲线C,求曲线C的方程.

分析 设动点(x,y),利用动点到直线l:x=4的距离与到点F(1,0)距离之比为2,建立方程,化简可得曲线C的方程.

解答 解:设动点(x,y),
∵动点到直线l:x=4的距离与到点F(1,0)距离之比为2,
∴$\frac{|x-4|}{\sqrt{(x-1)^{2}+{y}^{2}}}$=2,
化简可得$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

点评 本题考查轨迹方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知点P在圆C:x2+y2-8x-6y+21=0上运动,O是坐标原点,求线段OP的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙两队参加听歌猜歌名游戏,每队3人.随机播放一首歌曲,参赛者开始抢答,每人只有一次抢答机会(每人抢答机会均等),答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为$\frac{2}{3}$,乙队中3人答对的概率分别为$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{2}$,且各人回答正确与否相互之间没有影响.
(Ⅰ)若比赛前随机从两队的6个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(Ⅱ)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望;
(Ⅲ)求两队得分之和大于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若Dξ=1,则D(ξ-Dξ)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于(  )
A.(-1,5]B.[1,4)C.(0,5]D.[-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设点P是椭圆$\frac{{x}^{2}}{4}$+y2=1上异于长轴端点的一个动点,F1、F2分别为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的平分线上一点,且F1M⊥MP,则|$\overrightarrow{OM}$|的取值范围是[0,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$\frac{1-i}{z}$=4+2i(i为虚数单位),则复数z在平面上的对应点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.
(1)在选派的3人中恰有2人会法语的概率;
(2)在选派的3人中既会法语又会英语的人数ξ的分布列与期望.

查看答案和解析>>

同步练习册答案