精英家教网 > 高中数学 > 题目详情
15.用另一种方法表示下列集合.
(1){绝对值不大于2的整数};
(2){能被3整除,且小于10的正数};
(3){x|x=|x|,x<5,且x∈Z};
(4){(x,y)|x+y=6,x∈N*,y∈N*};
(5){-3,-1,1,3,5}.

分析 根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.

解答 解:(1){绝对值不大于2的整数}={-2,-1,0,1,2}.
(2){能被3整除,且小于10的正数}={3,6,9}.
(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.
(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.
(5){-3,-1,1,3,5}={x|x=2k-1,-1≤k≤3,k∈Z}.

点评 考查集合的概念,集合的表示方法:列举法,描述法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若$sin\frac{A}{2}=cos\frac{A+B}{2}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在极坐标系中,曲线C的方程为ρ2cos2θ=9,点P(2$\sqrt{3}$,$\frac{π}{6}$),以极点O为原点,极轴为x轴的正半轴建立直角坐标系.
(1)求直线OP的参数方程和曲线C的直角坐标方程;
(2)若直线OP与曲线C交于A、B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,平行四边形ABCD中,AE:EB=1:2,△AEF的面积为6,求△ADF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα是方程5x2-7x-6=0的根,求:
(1)$\frac{cos(2π-α)cos(π+α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}+α)sin(2π-α)co{t}^{2}(π-α)}$的值.
(2)在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,AC=2,AB=3,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若角α的终边落在直线y=2x上,求sin2α-cos2α+sinαcosα的值(  )
A.1B.2C.±2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.学生体质与学生饮食的科学性密切相关,营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.已知1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足高中学生日常饮食的营养要求,每天合理搭配食物A和食物B,则最低花费是16元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$y=tan({x-\frac{π}{3}})$的单调增区间为$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)当a=b=1时,求函数f(x)的最大值;
(2)当b=1,a≤0时,求函数f(x)的单调区间;
(3)当a=0,b=-4时,方程x2+2mf(x)=0有唯一解,求实数m取值范围.

查看答案和解析>>

同步练习册答案