7£®Ñ§ÉúÌåÖÊÓëѧÉúÒûʳµÄ¿ÆÑ§ÐÔÃÜÇÐÏà¹Ø£¬ÓªÑøÑ§¼ÒÖ¸³ö£¬¸ßÖÐѧÉúÁ¼ºÃµÄÈÕ³£ÒûʳӦ¸ÃÖÁÉÙÌṩ0.075kgµÄ̼ˮ»¯ºÏÎ0.06kgµÄµ°°×ÖÊ£¬0.06kgµÄÖ¬·¾£®ÒÑÖª1kgʳÎïAº¬ÓÐ0.105kg̼ˮ»¯ºÏÎ0.07kgµ°°×ÖÊ£¬0.14kgÖ¬·¾£¬»¨·Ñ28Ôª£»1kgʳÎïBº¬ÓÐ0.105kg̼ˮ»¯ºÏÎ0.14kgµ°°×ÖÊ£¬0.07kgÖ¬·¾£¬»¨·Ñ21Ôª£®ÎªÁËÂú×ã¸ßÖÐѧÉúÈÕ³£ÒûʳµÄÓªÑøÒªÇó£¬Ã¿ÌìºÏÀí´îÅäʳÎïAºÍʳÎïB£¬Ôò×îµÍ»¨·ÑÊÇ16Ôª£®

·ÖÎö ÓªÑøÑ§¼ÒÖ¸³ö£¬¸ßÖÐѧÉúÁ¼ºÃµÄÈÕ³£ÒûʳӦ¸ÃÖÁÉÙÌṩ0.075kgµÄ̼ˮ»¯ºÏÎ0.06kgµÄµ°°×ÖÊ£¬0.06kgµÄÖ¬·¾£®1kgʳÎïAº¬ÓÐ0.105kg̼ˮ»¯ºÏÎ0.07kgµ°°×ÖÊ£¬0.14kgÖ¬·¾£¬»¨·Ñ35Ôª£»¶ø1kgʳÎïBº¬ÓÐ0.105kg̼ˮ»¯ºÏÎ0.14kgµ°°×ÖÊ£¬0.07kgÖ¬·¾£¬»¨·Ñ28Ôª£®ÎªÁËÂú×ãÓªÑø×¨¼ÒÖ¸³öµÄ ÈÕ³£ÒûʳҪÇó£¬Í¬Ê±Ê¹»¨·Ñ×îµÍ£¬ÐèҪͬʱʳÓÃʳÎïAºÍʳÎïB¶àÉÙkg£¿
ÉèÿÌìʳÓÃxkgAʳÎykgBʳÎ×ܳɱ¾Îªz£®½¨Á¢Ô¼ÊøÌõ¼þ£¬ÀûÓÃÏßÐԹ滮µÄ֪ʶ½øÐÐÇó½â£®

½â´ð ½â£ºÉèÿÌìʳÓÃxkgAʳÎykgBʳÎ×ܳɱ¾Îªz£®Ôò$\left\{\begin{array}{l}{0.105x+0.105y¡Ý0.075}\\{0.07x+0.14y¡Ý0.06}\\{0.14x+0.07y¡Ý0.06}\\{y¡Ý0}\\{x¡Ý0}\end{array}\right.$Ä¿±êº¯ÊýΪz=28x+21y------------------4·Ö
²»µÈʽ×黯¼òΪ$\left\{\begin{array}{l}{7x+7y¡Ý5}\\{7x+14y¡Ý6}\\{14x+7y¡Ý6}\\{y¡Ý0}\\{x¡Ý0}\end{array}\right.$Èçͼ×÷³ö¿ÉÐÐÓò£¨ÒõÓ°²¿·Ö£©£®---------------------------------------6·Ö

°Ñz=28x+21y±äÐÎΪy=-$\frac{4}{3}$x+$\frac{z}{21}$£¬
ÓÉͼ¿É¼û£¬µ±Ö±Ïßz=28x+21y¾­¹ý¿ÉÐÐÓòÉϵĵãMʱz×îС£®-------8·Ö

½â·½³Ì×é$\left\{\begin{array}{l}{7x+7y=5}\\{14x+7y=6}\end{array}\right.$µÃMµÄ×ø±êΪ£¨$\frac{1}{7}$£¬$\frac{4}{7}$£©--------------10·Ö
ËùÒÔzmin=28x+21y=16
¹ÊÿÌìʳÓÃAÔ¼143g£¬Ê³ÎïBÔ¼571g£¬Äܹ»Âú×ãÈÕ³£ÒûʳҪÇó£¬ÓÖʹ»¨·Ñ×îµÍ£¬×îµÍ³É±¾16Ôª£®
¹Ê´ð°¸Îª£º16£®£®--------------12·Ö£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Ó㬽¨Á¢Ô¼ÊøÌõ¼þ£¬ÀûÓÃÊýÐνáºÏÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²$E£º\frac{x^2}{5}+\frac{y^2}{4}=1$µÄÓÒ½¹µãΪF£¬ÉèÖ±Ïßl£ºx=5ÓëxÖáµÄ½»µãΪE£¬¹ýµãFÇÒбÂÊΪkµÄÖ±Ïßl1ÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬MΪÏß¶ÎEFµÄÖе㣮
£¨I£©ÈôÖ±Ïßl1µÄÇãб½ÇΪ$\frac{¦Ð}{4}$£¬Çó¡÷ABMµÄÃæ»ýSµÄÖµ£»
£¨¢ò£©¹ýµãB×÷Ö±ÏßBN¡ÍlÓÚµãN£¬Ö¤Ã÷£ºA£¬M£¬NÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬AD¡ÍBCÓÚD£¬ÏÂÁÐÌõ¼þ£º
£¨1£©¡ÏB+¡ÏDAC=90¡ã£»
£¨2£©¡ÏB=¡ÏDAC£»
£¨3£©$\frac{CD}{AD}$=$\frac{AC}{AB}$£»
£¨4£©AB2=BD•BC£®
ÆäÖÐÒ»¶¨Äܹ»Åж¨¡÷ABCÊÇÖ±½ÇÈý½ÇÐεĹ²ÓУ¨¡¡¡¡£©
A£®3¸öB£®2¸öC£®1¸öD£®0¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÓÃÁíÒ»ÖÖ·½·¨±íʾÏÂÁм¯ºÏ£®
£¨1£©{¾ø¶ÔÖµ²»´óÓÚ2µÄÕûÊý}£»
£¨2£©{Äܱ»3Õû³ý£¬ÇÒСÓÚ10µÄÕýÊý}£»
£¨3£©{x|x=|x|£¬x£¼5£¬ÇÒx¡ÊZ}£»
£¨4£©{£¨x£¬y£©|x+y=6£¬x¡ÊN*£¬y¡ÊN*}£»
£¨5£©{-3£¬-1£¬1£¬3£¬5}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªa£¬b£¬c¾ùΪÕýÊý£®
£¨1£©Èôa+b=1£¬Çó$\frac{1}{a}+\frac{4}{b}$µÄ×îСֵ£»
£¨2£©Èôa+b+c=m£¬ÇóÖ¤£º$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}$¡Ým£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èô²»µÈʽ-3¡Üx2-2ax+a¡Ü-2ÓÐΨһ½â£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®2»ò-1B£®$\frac{{-1¡À\sqrt{5}}}{2}$C£®$\frac{{1¡À\sqrt{5}}}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôb=3£¬c=4£¬ÇÒ¡÷ABCµÄÃæ»ýΪ3$\sqrt{3}$£¬Ôòa=$\sqrt{13}$»ò$\sqrt{37}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}y¡Ý1\\ y¡Ü2x-1\\ x+y¡Üm\end{array}\right.$ÇÒÄ¿±êº¯Êýz=x-yµÄ×îСֵΪ-1£¬Ôòm=£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªa£¬b¡ÊR£¬iÊÇÐéÊýµ¥Î»£¬Èôa+i=2-bi£¬Ôò£¨a+bi£©2=£¨¡¡¡¡£©
A£®3-4iB£®3+4iC£®4-3iD£®4+3i

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸