精英家教网 > 高中数学 > 题目详情
2.已知抛物线x2=-4y的准线与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线围成一个面积为1的三角形,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

分析 求出抛物线的准线方程和双曲线的渐近线方程,解方程可得交点坐标,根据三角形的面积公式,解方程可得a=b,由离心率公式即可得到所求.

解答 解:抛物线x2=-4y的准线方程为y=1,①
双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线方程为y=±$\frac{b}{a}$x,②
由①②可得交点为A(-$\frac{a}{b}$,1),B($\frac{a}{b}$,1),
则|AB|=$\frac{2a}{b}$,
则三角形的面积S=$\frac{1}{2}$×$\frac{2a}{b}$×1=1,
即a=b,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{2}$a,
则e=$\frac{c}{a}$=$\sqrt{2}$.
故选:A.

点评 本题考查抛物线的准线方程和双曲线的渐近线方程的运用,考查离心率的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.有人手抓一把的骰子,共16颗,颗颗相同,掷到桌面上,则6点朝上的颗数是2的可能性最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinα+cosα=$\frac{1}{2}$,α∈(0,π),求$\frac{1-tanα}{1+tanα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给定两个向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则x的值等于±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一条渐近线过点(4,3),且双曲线的一个焦点在抛物线y2=20x的准线上,则双曲线的方程为$\frac{x^2}{16}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出的k值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若点P(x0,2)为抛物线E:y2=4x上一点,则点P到抛物线E的焦点的距离为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x∈[π,2π],则sinx≤-$\frac{1}{2}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等差数列{an}满足:${a_{n+1}}+{a_{n-1}}=a_n^2\;(n≥2)$,等比数列{bn}满足:${b_{n+1}}{b_{n-1}}=2b_n^{\;}\;(n≥2)$,则log2(a2+b2)=(  )
A.-1或2B.0或2C.2D.1

查看答案和解析>>

同步练习册答案