精英家教网 > 高中数学 > 题目详情
9.某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,则学号为31号到50号同学的平均成绩为95.

分析 设学号为31号到50号同学的平均成绩为x,得到关于x的方程,解出即可.

解答 解:设学号为31号到50号同学的平均成绩为x,
则92×50=90×30+20x,解得:x=95,
故答案为:95.

点评 本题考查了平均数问题,掌握平均数的定义是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.连续两次抛掷一枚骰子,记录向上的点数,则向上的点数之差的绝对值为2的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正数x,y满足$x+4y+\frac{1}{x}+\frac{1}{y}=10$,则$\frac{1}{x}+\frac{1}{y}$的取值范围是[1,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.使tanx≥1成立的x的集合为{x|$\frac{π}{4}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有两个不等实根,则m的取值范围是(  )
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆Q:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),F1,F2分别是其左、右焦点,以线段F1F2为直径的圆与椭圆Q有且仅有两个交点.
(1)求椭圆Q的方程;
(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是[-$\frac{1}{4}$,0),求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x},0≤x<1}\\{lnx+e,1≤x≤e}\end{array}\right.$在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是(  )
A.$\frac{1}{e}$B.1-$\frac{1}{e}$C.$\frac{e}{1+e}$D.$\frac{1}{1+e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象如图所示,其中A(-$\frac{5π}{12}$,0),B($\frac{π}{12}$,0),则函数f(x)的单调增区间为(  )
A.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)B.[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)
C.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)D.[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ](k∈Z)

查看答案和解析>>

同步练习册答案