精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=|x-1|+2|x+1|
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)当f(x)≤4时,|x+3|+|x+a|<x+6,求实数a的取值范围.

分析 (Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;
(Ⅱ)根据[-$\frac{5}{3}$,1]⊆(-a-3,-a+3),得到关于a的不等式组,解出即可.

解答 解:(Ⅰ)∵f(x)=|x-1|+2|x+1|≤4,
∴$\left\{\begin{array}{l}{x≥1}\\{x-1+2x+2≤4}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<1}\\{-x+1+2x+2≤4}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-1}\\{-x+1-2x-2≤4}\end{array}\right.$,
解得:{x|-$\frac{5}{3}$≤x≤1};
(Ⅱ)在-$\frac{5}{3}$≤x≤1时,不等式|x+3|+|x+a|<x+6等价于|x+a|<3,
等价于-a-3<x<-a+3,
从而[-$\frac{5}{3}$,1]⊆(-a-3,-a+3),
故$\left\{\begin{array}{l}{1<-a+3}\\{-a-3<-\frac{5}{3}}\end{array}\right.$,
解得:{a|-$\frac{4}{3}$<a<2}.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及集合的包含关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若根据10名儿童的年龄x(岁)与体重y(千克)数据用最小二乘法得到用年龄预测体重的回归方程$\hat y=2x+7$,已知这10名儿童的年龄分别是2,3,3,5,2,6,7,3,4,5,则这10名儿童的平均体重是(  )
A.15千克B.16千克C.17千克D.18千克

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P=$\{0,1,\sqrt{2}\}$,Q={y|y=cosθ,θ∈R},则P∩Q=(  )
A.ϕB.{0}C.{0,1}D.$\{0,1,\sqrt{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果一组数据a1,a2,a3,a4,a5,a6的方差是2,那么另一组数据2a1,2a2,2a3,2a4,2a5,2a6的方差是(  )
A.2B.6C.8D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,若存在x,y使得xy=k(k>0),则k的最大值是(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c分别为△ABC的三个内角A,B,C的对边,$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=$\sqrt{3}$,△ABC在BC边上的中线长为1,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+ϕ)-1(ω>0,|φ|<π)的一个零点是$x=\frac{π}{3}$,其图象上一条对称轴方程为$x=-\frac{π}{6}$,则当ω取最小值时,下列说法正确的是①③.(填写所有正确说法的序号)
①当$x∈[-\frac{4π}{3},-\frac{π}{6}]$时,函数f(x)单调递增;
②当$x∈[-\frac{π}{6},\frac{5π}{3}]$时,函数f(x)单调递减;
③函数f(x)的图象关于点$(\frac{7π}{12},-1)$对称;
④函数f(x)的图象关于直线$x=\frac{-4π}{3}$对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.经国务院批复同意,重庆成功入围国家中心城市,某校学生社团针对“重庆的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图所示茎叶图:

(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;
(Ⅱ)如图按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高h;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

同步练习册答案