精英家教网 > 高中数学 > 题目详情
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,试求{an}的公比.
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:根据等比数列的求和分别表示出S3、S9、S6代入2S9=S6+S3,即可得到答案.
解答: 解:∵S3,S9,S6成等差数列,∴S3+S6=2S9
若q=1,则S3=3a1,S6=6a1,S9=9a1
由a1≠0可得S3+S6≠2S9,与题设矛盾,∴q≠1.
a1(1-q3)
1-q
+
a1(1-q6)
1-q
=2
a1(1-q9)
1-q

整理后,得q3+q6=2q9,∵q≠0∴1+q3=2q6
将q3视为整体,解之得q3=1(舍去)或q3=-
1
2
,即q=-
34
2
点评:本题主要考查了等比数列的性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知c是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的半焦距,则
2b+c
2a
的取值范围是(  )
A、(
1
2
,+∞)
B、(
1
2
5
2
]
C、(
1
2
2
]
D、(
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千米.现要在AB上某一点D处,向C修一条公路,已知铁路每吨千米的运费与公路每吨千米的运费之比为3:5.为了使原料从供应站B运到工厂C的运费最少,D点应选在何处?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a,设SB的中点为M,DM⊥MC.
(1)求证:DM⊥平面SBC;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

攀枝花市欢乐阳光节是攀枝花市的一次向外界展示攀枝花的盛会,为了搞好接待工作,组委会在某大学招募了8名男志愿者和5名女志愿者(分成甲乙两组),招募时志愿者的个人综合素质测评成绩如图所示.
(Ⅰ)问男志愿者和女志愿者的平均个人综合素质测评成绩哪个更高?
(Ⅱ)现从甲乙两组个人综合素质测评为优秀(成绩在80分以上为优秀)
的志愿者中随机抽取2名志愿者负责接待外宾,要求2人中至少有一名女志
愿者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
1-a
x-1
>a(a≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=3,若
a
b
的夹角为θ=120°,求
(1)
a
b

(2)求|2
a
+3
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F1与抛物线y2=4x的焦点重合,原点到过点A(a,0),B(0,-b)的直线的距离是
2
7
21

(1)求椭圆C的方程;
(2)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,过F1作PF1的垂直于直线l交于点Q,求证:点Q在定直线上,并求出定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数f(x)=x+
1
x
的奇偶性.

查看答案和解析>>

同步练习册答案