精英家教网 > 高中数学 > 题目详情
如图,已知四边形ABCD与CDEF均为正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求证:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定,与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角,空间向量及应用
分析:(Ⅰ)证明ED⊥平面ABCD,根据平面ABCD⊥平面CDEF,只需证明ED⊥CD;
(Ⅱ)建立空间直角坐标系,分别求出平面BDE、平面BEC的法向量,利用向量的夹角公式,即可求二面角D-BE-C的大小.
解答: (Ⅰ)证明:因为平面ABCD⊥平面CDEF,且平面ABCD∩平面CDEF=CD,
又因为四边形CDEF为正方形,
所以ED⊥CD.
因为ED?平面CDEF,
所以ED⊥平面ABCD.…(4分)
(Ⅱ)解:以D为坐标原点,如图建立空间直角坐标系D-xyz.

则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),E(0,0,1).
所以平面BDE的法向量为
AC
=(-1,1,0)
.…(5分)
设平面BEC的法向量为
n
=(x,y,z).
因为
CB
=(1,0,0),
CE
=(0,-1,1)

所以
x=0
-y+z=0
x=0
y=z.

令z=1,则
n
=(0,1,1).…6 分
所以cos<
AC
n
>=
AC
n
|
AC
||
n
|
=
1
2

所以二面角D-BE-C的大小为60°.…(8分)
点评:本题考查线面垂直的判定定理,考查面面角,正确运用线面垂直的判定定理,求出平面的法向量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+kx+4
x
(1≤x≤3),若对定义域内的任意实数x1、x2、x3不等式f(x1)+f(x2)>f(x3)恒成立,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
A、
3
B、π
C、
3
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:∵tan2α=
2tanα
1-tan2α
,∴cot2α=
1-tan2α
2tanα

∴2cot2α=cotα-tanα即cotα=tanα+2cot2α
(1)请利用已知的结论证明:cotα=tanα+2tan2α+4cot4α
(2)请你把(2)的结论推广到更一般的情形,使之成为推广后的特例,并加以证明;
(3)化简tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两顶点坐标A(-1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
4an-1
2an-1+1
(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
n
k=1
ak
3n-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到点F(0,1)的距离等于点M到直线y=-1的距离,点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设P为直线l:x-y-2=0上的点,过点P做曲线C的两条切线PA,PB,当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(Ⅲ)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a
a2-1
(ax-a-x) (a>0且a≠1)

(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)判断f(x)的单调性,并证明你的结论;
(Ⅲ)当x∈[-1,1]时,2f(x)-3b≥0恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案