| A. | f(x)=kx+h | B. | f(x)=ax2+bx+c | C. | f(x)=pqx+r | D. | f(x)=mlnx+n |
分析 求出函数解析式,计算x=4、5、6时的函数值,最后与真实值进行比较,即可得出结论.
解答 解:f(x)=kx+h,则$\left\{\begin{array}{l}{k+h=52}\\{2k+h=61}\end{array}\right.$,∴k=9,h=43,
∴f(x)=9x+43,f(3)=70>68,f(4)=79>74,f(5)=86>78;
f(x)=ax2+bx+c,
由题意得:$\left\{\begin{array}{l}{a+b+c=54}\\{4a+2b+c=61}\\{9a+3b+c=68}\end{array}\right.$,解得a=-1,b=12,c=41,
∴f(x)=-x2+12x+41,
∴f(4)=-42+12×4+41=73<74,
f(5)=-52+12×5+41=76<78,
f(x)=p•qx+r,
由题意得:$\left\{\begin{array}{l}{p•q+r=52}\\{p•{q}^{2}+r=61}\\{p•{q}^{3}+r=68}\end{array}\right.$,解得p=-$\frac{729}{14}$,q=$\frac{7}{9}$,r=92.5,
∴f(x)=-$\frac{729}{14}$•($\frac{7}{9}$)x+92.5,
∴f(4)≈73,f(5)≈78,
f(x)=mlnx+n,$\left\{\begin{array}{l}{n=52}\\{mln2+n=61}\end{array}\right.$,∴m=$\frac{9}{ln2}$,n=52,
∴f(x)=$\frac{9}{ln2}$lnx+52,
∴f(3)=$\frac{9}{ln2}$ln3+52<68,f(x)=$\frac{9}{ln2}$ln4+52=60<74,f(x)=$\frac{9}{ln2}$ln5+52<78,
故选:A.
点评 本题考查了根据实际问题选择函数类型的应用问题,也考查了用待定系数法求函数解析式的应用问题,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com