精英家教网 > 高中数学 > 题目详情
5.若等比数列{an}的前n项之和为${S_n}=4×{3^{n+1}}-k$,则常数k的值为(  )
A.1B.3C.4D.12

分析 利用递推关系可得a1,an,an对于n=1时也成立,即可得出.

解答 解:∵${S_n}=4×{3^{n+1}}-k$,∴a1=S1=4×32-k=36-k,n≥2时,an=Sn-Sn-1=4×3n+1-4×3n=8×3n
∵数列{an}是等比数列,∴n=1时,上式也成立,∴36-k=24,
解得k=12.
故选;D.

点评 本题考查了等比数列的通项公式及其性质、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是偶函数,当x>0时,f(x)=(2x-1)lnx,则曲线y=f(x)在点(-1,f(-1))处的切线斜率为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从边长为1的正方体12条棱中任取两条,则这两条棱所在直线为异面直线的概率是$\frac{4}{11}$.(用数值表示结果)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足$\frac{2}{z}=1-i$,则z的共轭复数$\overline z$=(  )
A.-2iB.1-iC.2iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.20件产品中有17件合格品,3件次品,从中任意抽取3件进行检查,问
(1)求抽取3件都是合格品的抽法种数.
(2)求抽出的3件中恰好有1件是次品的概率.
(3)求抽出的3件至少有2件不是次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法中正确的是(  )
A.第一象限角一定是负角B.直角是象限角
C.钝角是第二象限角D.终边与始边均相同的角一定相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,规定ρ≥0,-π≤θ<π,若点M的直角坐标是$(1,-\sqrt{3})$,则点M的极坐标为$(2,-\frac{π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.试用等值算法求四个数84,108,132,156的最大公约数.

查看答案和解析>>

同步练习册答案