精英家教网 > 高中数学 > 题目详情

在四棱锥中,侧面底面中点,底面是直角梯形,,,.

(1)求证:
(2)求证:面
(3)设为棱上一点,,试确定的值使得二面角.

(1)证明过程详见解析;(2)证明过程详见解析;(3)能确定,.

解析试题分析:(1)先证明为平行四边形,所以,即证明;(2)先证明,所以,再证明 面,从而得到面;(3)先建立空间直角坐标系,所以即为面法向量,令面法向量为,利用夹角的余弦求出,又在棱上,所以对的值进行取舍.
试题解析:(1)证明:记中点为. 连结 ,
则 AB  FE 所以AB FE     1分
所以为平行四边形.                      2分
,             4分
(2)连结在直角梯形中.,所以   5分
,  6分
 ,  面,  7分
       8分

(3)以为原点, 所在直线分别为轴, 轴, 轴建立空间直角坐标系.

,∵,∴
即为面法向量
又令面法向量为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,底面上一点

(1)求证:平面平面
(2)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,.

(Ⅰ)证明:
(Ⅱ)若求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.

(Ⅰ) 证明EF//平面A1CD;
(Ⅱ) 证明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.

(Ⅰ)求证:AC⊥A1B;
(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.

(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

同步练习册答案