精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,an+1=
2an
2+an
(n∈N*),
(1)写出这个数列的前5项;
(2)根据数列的前5项写出这个数列的一个通项公式(不需要证明);
(3)令bn=
anan+1
4
,证明:b1+b2+…+bn
1
2
成立.
考点:数列与不等式的综合,数列的概念及简单表示法,数列递推式
专题:等差数列与等比数列
分析:(1)根据在数列{an}中,a1=1,an+1=
2an
2+an
(n∈N*),代入即可得出;
(2)根据数列的前5项猜想这个数列的一个通项公式an=
2
n+1
(n∈N*)

(3)由bn=
anan+1
4
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,利用“裂项求和”b1+b2+…+bn=(
1
2
-
1
3
)+(
1
3
-
1
4
)
+…+(
1
n+1
-
1
n+2
)
=
1
2
-
1
n+2
即可证明.
解答: (1)解:∵在数列{an}中,a1=1,an+1=
2an
2+an
(n∈N*),
∴a2=
2
2+1
=
2
3
,同理a3=
1
2
,a4=
2
5
,a5=
1
3

(2)解:根据数列的前5项猜想这个数列的一个通项公式an=
2
n+1
(n∈N*)

(3)证明:bn=
anan+1
4
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴b1+b2+…+bn=(
1
2
-
1
3
)+(
1
3
-
1
4
)
+…+(
1
n+1
-
1
n+2
)
=
1
2
-
1
n+2
1
2

∴b1+b2+…+bn
1
2
成立.
点评:本题考查了递推式的意义、猜想能力、“裂项求和”,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题其中错误的是(  )
x-10245
f x 121.521
A、函数f(x)的值域为[1,2]
B、函数f(x)在[0,2]上是减函数
C、如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4
D、当1<a<2时,函数y=f(x)-a最多有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,a1+a5=1,则S5=(  )
A、
5
2
B、5
C、-
5
2
D、-5

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥CD,E为PC中点,底面ABCD是直角梯形,
AB∥CD,∠ADC=90°,AB=PD=1,CD=2.
(Ⅰ)求异面直线PC与AB所成角的余弦值:
(Ⅱ)求证:BE∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的准线与圆x2+y2-4x-5=0相切,则p值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的不等式|x-1|≤a-x.
(1)若a=2,解上述不等式;
(2)若上述的不等式有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn(n∈N*
(Ⅰ)若a1+a2+a3+…+an-1=29-n,求n的值;
(Ⅱ)求a3(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表.
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(1)由以上统计数据求下面2乘2列联表中的a,b,c,d的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入低于55百元的人数月收入不低于55百元的人数合计
赞成a      b
不赞成       c      d
合计 50
(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为x,求x=1的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
  n=a+b+c+d
p(K2≥k)0.100.050.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,若输入x的值为-5,求输出的y值.

查看答案和解析>>

同步练习册答案