精英家教网 > 高中数学 > 题目详情

【题目】某设备的使用年数x与所支出的维修总费用y的统计数据如下表:

使用年数x(单位:年)

2

3

4

5

6

维修费用y(单位:万元)

1.5

4.5

5.5

6.5

7.0

根据上标可得回归直线方程为 =1.3x+ ,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用年.

【答案】9
【解析】解:计算 = ×(2+3+4+5+6)=4, = ×(1.5+4.5+5.5+6.5+7.0)=5,
又回归直线方程 =1.3x+ 过样本中心点,
= ﹣1.3 =5﹣1.3×4=﹣0.2,
∴回归直线方程为 =1.3x﹣0.2;
=1.3x﹣0.2≥12,
解得x≥9.4≈9,
∴据此模型预测该设备最多可使用9年.
所以答案是:9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数同时满足以下三个条件:

①对任意的,总有

③若,则有成立,则称友谊函数”.

)若已知友谊函数,求的值.

)分别判断函数在区间上是否为友谊函数,并给出理由.

)已知友谊函数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函数f(x)= 的图象关于直线x= 对称,求角A,B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的图像向左平移个单位,再向下平移1个单位,得到函数的图像,则下列关于函数的说法中正确的个数是(

函数的最小正周期是 函数的一条对称轴是

③函数的一个零点是 ④函数在区间上单调递减

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形,点为矩形内一点,且,设.

(1)当时,求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,已知平面

1)求证:

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 上, 点到抛物线的焦点的距离为2,直线

与抛物线交于两点.

(1)求抛物线的方程;

(2)若以为直径的圆与轴相切,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

同步练习册答案