【题目】某设备的使用年数x与所支出的维修总费用y的统计数据如下表:
使用年数x(单位:年) | 2 | 3 | 4 | 5 | 6 |
维修费用y(单位:万元) | 1.5 | 4.5 | 5.5 | 6.5 | 7.0 |
根据上标可得回归直线方程为 =1.3x+ ,若该设备维修总费用超过12万元,据此模型预测该设备最多可使用年.
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数同时满足以下三个条件:
①对任意的,总有;
②;
③若,且,则有成立,则称为“友谊函数”.
()若已知为“友谊函数”,求的值.
()分别判断函数与在区间上是否为“友谊函数”,并给出理由.
()已知为“友谊函数”,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函数f(x)= 的图象关于直线x= 对称,求角A,B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将的图像向左平移个单位,再向下平移1个单位,得到函数的图像,则下列关于函数的说法中正确的个数是( )
① 函数的最小正周期是 ② 函数的一条对称轴是
③函数的一个零点是 ④函数在区间上单调递减
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在抛物线 上, 点到抛物线的焦点的距离为2,直线
与抛物线交于两点.
(1)求抛物线的方程;
(2)若以为直径的圆与轴相切,求该圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(1)求频率分布直方图中的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com