精英家教网 > 高中数学 > 题目详情
5.已知变量x,y满足线性约束条件$\left\{\begin{array}{l}{4x+3y-25≤0}\\{x-4y+8≤0}\\{x-1≥0}\end{array}\right.$,若线性目标函数z=ax-y(a>1)的最大值为5,则实数a的值为2.

分析 画出满足条件的平面区域,求出A的坐标,由z=ax-y得:y=ax-z,结合函数的图象显然直线y=ax-z过A(4,3)时,z最大,求出a的值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{4x+3y-25=0}\\{x-4y+8=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,
由z=ax-y得:y=ax-z,
显然直线y=ax-z过A(4,3)时,z最大,
此时,5=4a-3,解得:z=2,
故答案为:2.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的$\sqrt{3}$倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=2\sqrt{3}sin(3ωx+\frac{π}{3})\;(ω>0)$,若f(x+θ)是周期为2π的偶函数,则θ的一个可能值是(  )
A.$\frac{4}{3}π$B.$\frac{7}{6}π$C.πD.$\frac{5}{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的左、右焦点分别为F1、F2,点A在椭圆上,且|AF2|=6,则△AF1F2的面积是(  )
A.48B.40C.32D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是(  )
A.i>1008,n=n+2B.i≤1008,n=n+2C.i>2016,n=n+1D.i>2016,n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若b=2$\sqrt{3}$.B=120°,C=30°,则a=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=1,公差d>0,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项
(Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{\sqrt{2-x}}{1-lo{g}_{2}x}$的定义域为(  )
A.(0,2]B.(0,2)C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.自然对数的底数e=1+$\frac{1}{1}$+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+$\frac{1}{4×3×2×1}$+…+$\frac{1}{n×(n-1)×…×2×1}$,根据这个公式画出求e的近似值(n=100)的程序框图,并写出对应的程序.

查看答案和解析>>

同步练习册答案