精英家教网 > 高中数学 > 题目详情
14.函数f(x)=$\frac{\sqrt{2-x}}{1-lo{g}_{2}x}$的定义域为(  )
A.(0,2]B.(0,2)C.(-2,2)D.[-2,2]

分析 根据二次根式以及对数函数的性质得到关于x的不等式组,解出即可.

解答 解:函数f(x)=$\frac{\sqrt{2-x}}{1-lo{g}_{2}x}$,
由题意得:$\left\{\begin{array}{l}{2-x≥0}\\{{log}_{2}^{x}≠1}\\{x>0}\end{array}\right.$,解得:0<x<2,
故选:B.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$e=\frac{{\sqrt{2}}}{2}$,焦距为2.
(1)求椭圆C的方程;
(2)抛物线y2=2px(p>0)的焦点和椭圆的右焦点重合,过右焦点作斜率为1的直线交椭圆于A,B,交抛物线于C,D,求△OAB和△OCD面积之比(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足线性约束条件$\left\{\begin{array}{l}{4x+3y-25≤0}\\{x-4y+8≤0}\\{x-1≥0}\end{array}\right.$,若线性目标函数z=ax-y(a>1)的最大值为5,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一果农种植了1000棵果树,为估计其产量,从中随机选取20棵果树的产量(单位:kg)作为样本数据,得到如图所示的频率分布直方图.已知样本中产量在区间(45,50]上的果树棵数为8,.
(Ⅰ)求频率分布直方图中a,b的值;
(Ⅱ)根据频率分布直方图,估计这20棵果树产量的中位数;
(Ⅲ)根据频率分布直方图,估计这1000棵果树的总产量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从装有2个红球和2个白球的袋内任取两球,下列每对事件中是互斥事件的是(  )
A.至少有一个白球;都是白球B.恰好有一个白球;恰好有两个白球
C.至少有一个白球;至少有一个红球D.至多有一个白球;都是红球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求经过点(-5,2),焦点为$({\sqrt{6},0})$的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$),x∈[0,π],当x=$\frac{π}{4}$时,f(x)取到最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(A类题)如图,在棱长为1的正方形ABCD-A1B1C1D1中选取四个点A1,C1,B,D,若A1,C1,B,D四个点都在同一球面上,则该球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=4y的焦点为F,过点D(0,-1)的直线l与抛物线C交于不同的A、B两点.
(Ⅰ)若$|{AB}|=4\sqrt{3}$,求直线l的方程;
(Ⅱ)记FA、FB的斜率分别为k1、k2,试问:k1+k2的值是否随直线l位置的变化而变化?证明你的结论.

查看答案和解析>>

同步练习册答案