精英家教网 > 高中数学 > 题目详情
2.已知在空间四边形OABC中,$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b,\overrightarrow{OC}=\overrightarrow c$,点M在OA上,且OM=3MA,N为BC中点,用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示$\overrightarrow{MN}$,则$\overrightarrow{MN}$等于-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$.

分析 根据题意画出图形,结合图形,利用空间向量的线性运算法则,用$\overrightarrow{OA}$、$\overrightarrow{OB}$和$\overrightarrow{OC}$表示出$\overrightarrow{MN}$即可.

解答 解:如图所示,
空间四边形OABC中,$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b,\overrightarrow{OC}=\overrightarrow c$,
∵点M在OA上,且OM=3MA,
∴$\overrightarrow{OM}$=$\frac{3}{4}$$\overrightarrow{OA}$;
又N为BC中点,
∴$\overrightarrow{ON}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)
∴$\overrightarrow{MN}$=$\overrightarrow{ON}$-$\overrightarrow{OM}$
=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)-$\frac{3}{4}$$\overrightarrow{OA}$
=-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$.
故答案为:$-\frac{3}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$.

点评 本题考查了空间向量的线性表示与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.三个数a=0.412,b=log20.41,c=20.41之间的大小关系为(  )
A.a<c<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某品牌的汽车4S店,对最近100例分期付款购车情况进行统计,统计结果如表所示,已知分9期付款的频率为0.4;该店经销一辆该品牌的汽车.若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.
 付款方式分3期 分6期 分9期 分12期 
 频数20 20 
(1)若以表中计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3位顾客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分层抽样的方式从这100位顾客中抽出5人,再从抽出的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列及数学期望E(η).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z满足z•i=2+3i,则z=3-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x≥0且x∈R,2x>x2”的否定是(  )
A.?x0≥0且x0∈R,${2^{x_0}}>{x_0}^2$B.?x≥0且x∈R,2x≤x2
C.?x0≥0且x0∈R,${2^{x_0}}≤{x_0}^2$D.?x0<0且x0∈R,${2^{x_0}}≤{x_0}^2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)(x∈R)满足f(x)+f(-x)=2若函数y=f(x)与函数y=$\frac{1+x}{x}$的图象的交点依次为(x1,y1),(x2,y2),…(xi,yi)则$\sum_{i=1}^{n}({x}_{i}+{y}_{i})$=(  )
A.0B.nC.2nD.4n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$x2+ax,g(x)=ex,a∈R且a≠0,e=2.718…,e为自然对数的底数.
(Ⅰ)求函数h(x)=f(x)•g(x)在[-1,1]上极值点的个数;
(Ⅱ)令函数p(x)=f'(x)•g(x),若?a∈[1,3],函数p(x)在区间[b+a-ea,+∞]上均为增函数,求证:b≥e3-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=lg(x2+4x-12)},B={x|-3<x<4},则A∩B等于(  )
A.(-3,-2)B.(-3,2)C.(2,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若分别为P(1,0)、Q(2,0),R(4,0)、S(8,0)四个点各作一条直线,所得四条直线恰围成正方形,则该正方形的面积不可能为(  )
A.$\frac{16}{17}$B.$\frac{36}{5}$C.$\frac{64}{37}$D.$\frac{196}{53}$

查看答案和解析>>

同步练习册答案