精英家教网 > 高中数学 > 题目详情
11.已知实数$a={log_2}3{,^{\;}}b={({\frac{1}{3}})^2}{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

分析 由对数函数与指数函数的性质求出a,b,c的范围得答案.

解答 解:∵a=log23∈(1,2),$b=(\frac{1}{3})^{2}<1$,
$c=lo{g}_{\frac{1}{3}}\frac{1}{30}$=log330>log39>2,
∴c>a>b.
故选:C.

点评 本题考查对数值的大小比较,考查对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;….设第n次“扩展”后所得数列为1,x1,x2,…,xm,2,并记an=log2(1•x1•x2•…•xm•2),则数列{an}的通项公式为${a_n}=\frac{{{3^n}+1}}{2}$,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log2x,g(x)=x2,则函数y=g(f(x))-x零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某学校要从高一年级的752名学生中选取5名学生代表去敬老院慰问老人,若采用系统抽样方法,首先要随机剔除2名学生,再从余下的750名学生中抽取5名学生,则其中学生甲被选中的概率为(  )
A.$\frac{1}{150}$B.$\frac{2}{752}$C.$\frac{2}{150}$D.$\frac{5}{752}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,当n=x+2y取最大值时,${({x-\frac{2}{{\sqrt{x}}}})^n}$的常数项为(  )
A.240B.-240C.60D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x3-9x2+12x+8a.
(1)求f(x)的极大值和极小值;
(2)若对任意的x∈[0,4],f(x)<4a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=sin$\frac{π}{3}$(x+1)-$\sqrt{3}$cos$\frac{π}{3}$(x+1),则f(1)+f(2)+…+f(2016)+f(2017)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线G:y2=2px(p>0),过焦点F的动直线l与抛物线交于A,B两点,线段AB的中点为M.
(Ⅰ)当直线l的倾斜角为$\frac{π}{4}$时,|AB|=16.求抛物线G的方程;
(Ⅱ) 对于(Ⅰ)问中的抛物线G,是否存在x轴上一定点N,使得|AB|-2|MN|为定值,若存在求出点N的坐标及定值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$C:\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$的离心率为 2,则直线mx+ny-1=0的倾斜角为(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案