精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2x3-9x2+12x+8a.
(1)求f(x)的极大值和极小值;
(2)若对任意的x∈[0,4],f(x)<4a2恒成立,求实数a的取值范围.

分析 (1)求出导数,求出单调区间,求得极值;
(2)对任意的x∈[0,4],f(x)<4a2恒成立,即为对任意的x∈[0,4],f(x)max<4a2.求得f(x)在[0,4]上的最大值,即可得到a的取值范围.

解答 解:(1)函数f(x)=2x3-9x2+12x+8a,
故f′(x)=6x2-18x+12,
当x>2或x<1时,f′(x)>0,f(x)递增;
当1<x<2时,f′(x)<0,f(x)递减.
即有f(x)在x=1处取得极大值,且为5+8a,
在x=2处取得极小值,且为4+8a;
(2)任意的x∈[0,4],f(x)<4a2恒成立,
即为任意的x∈[0,4],f(x)max<4a2
由f(x)在[0,1],[2,4]递增,在[1,2]递减,
f(0)=8a,f(1)=5+8a,f(2)=4+8a,f(4)=32+8a,
即有4a2>32+8a,
解得a>4或a<-2.
则a的取值范围是(-∞,-2)∪(4,+∞).

点评 本题考查导数的运用:求单调区间和极值、最值,主要考查求极值、最值的方法,同时考查不等式恒成立问题转化为求函数的最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(ax+b)+ex-1(a≠0).
(Ⅰ)当a=-1,b=1时,判断函数f(x)的零点个数;
(Ⅱ)若f(x)≤ex-1+x+1,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B是半径为$2\sqrt{3}$的球面上的两点,过AB作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB的长度是(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数 $a={log_2}3{,^{\;}}b=\int_1^2{({x+\frac{1}{x}})}dx{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数$a={log_2}3{,^{\;}}b={({\frac{1}{3}})^2}{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于x的方程52x-5x+1+a=0在(0,1)有实数根,则实数a的取值范围是(0,$\frac{25}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f (x)满足:f ( p+q)=f ( p) f (q),f (1)=3,则$\frac{{{{[f(1)]}^2}+f(2)}}{f(1)}$+$\frac{{{{[f(2)]}^2}+f(4)}}{f(3)}$+$\frac{{{{[f(3)]}^2}+f(6)}}{f(5)}$+$\frac{{{{[f(4)]}^2}+f(8)}}{f(7)}$+$\frac{{{{[f(5)]}^2}+f(10)}}{f(9)}$的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(x2+xy+2y)5的展开式中x6y2的系数为(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)是定义在 R上的奇函数,且当x>0时,f(x)=2x-1,则f(f(-1))的值为-1.

查看答案和解析>>

同步练习册答案