精英家教网 > 高中数学 > 题目详情
7.已知A,B是半径为$2\sqrt{3}$的球面上的两点,过AB作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB的长度是(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

分析 设过AB作互相垂直的两个平面α、β截该球所得的两个截面圆分别为圆O1,O2,半径分别为r1,r2,球半径为R,
则有$\left\{\begin{array}{l}{{R}^{2}=O{{O}_{1}}^{2}+{{r}_{1}}^{2}}\\{{R}^{2}=O{{O}_{2}}^{2}+{{r}_{2}}^{2}}\end{array}\right.$,⇒$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-(O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$)
由$π{{r}_{1}}^{2}+π{{r}_{2}}^{2}=16π$⇒${{r}_{1}}^{2}+{{r}_{2}}^{2}=16$
由OH2=$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$=8,得AB=2$\sqrt{{R}^{2}-O{H}^{2}}=4$

解答 解:如图所示:设过AB作互相垂直的两个平面α、β截该球所得的两个截面圆分别为圆O1,O2,半径分别为r1,r2,球半径为R,
则有$\left\{\begin{array}{l}{{R}^{2}=O{{O}_{1}}^{2}+{{r}_{1}}^{2}}\\{{R}^{2}=O{{O}_{2}}^{2}+{{r}_{2}}^{2}}\end{array}\right.$,⇒$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-({{r}_{1}}^{2}+{{r}_{2}}^{2})$
又因为α,β截该球所得的两个截面的面积之和为16π,∴$π{{r}_{1}}^{2}+π{{r}_{2}}^{2}=16π$⇒${{r}_{1}}^{2}+{{r}_{2}}^{2}=16$
∴,$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-({{r}_{1}}^{2}+{{r}_{2}}^{2})$=2×$(2\sqrt{3})^{2}-16=8$.
∵OH2=$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$=8,∴AB=2$\sqrt{{R}^{2}-O{H}^{2}}=4$
故选:D

点评 本题考查了球的性质,把空间问题转化为平面问题是解题的关键,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知$sin(α-\frac{π}{12})=\frac{1}{3}$,则$cos(α+\frac{5π}{12})$的值等于(  )
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以2秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过1秒的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ex与g(x)=ax+b的图象交于P(x1,y1),Q(x2,y2)两点.
(Ⅰ)求函数h(x)=f(x)-g(x)的最小值;
(Ⅱ)且PQ的中点为M(x0,y0),求证:f(x0)<a<y0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log2x,g(x)=x2,则函数y=g(f(x))-x零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在(1+x3)(1-x)8的展开式中,x5的系数是(  )
A.-28B.-84C.28D.84

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某学校要从高一年级的752名学生中选取5名学生代表去敬老院慰问老人,若采用系统抽样方法,首先要随机剔除2名学生,再从余下的750名学生中抽取5名学生,则其中学生甲被选中的概率为(  )
A.$\frac{1}{150}$B.$\frac{2}{752}$C.$\frac{2}{150}$D.$\frac{5}{752}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x3-9x2+12x+8a.
(1)求f(x)的极大值和极小值;
(2)若对任意的x∈[0,4],f(x)<4a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={e^x}+\frac{1}{x}$(x>0),若x0满足f'(x0)=0,设m∈(0,x0),n∈(x0,+∞),则(  )
A.f'(m)<0,f'(n)<0B.f'(m)>0,f'(n)>0C.f'(m)<0,f'(n)>0D.f'(m)>0,f'(n)<0

查看答案和解析>>

同步练习册答案