精英家教网 > 高中数学 > 题目详情
19.某学校要从高一年级的752名学生中选取5名学生代表去敬老院慰问老人,若采用系统抽样方法,首先要随机剔除2名学生,再从余下的750名学生中抽取5名学生,则其中学生甲被选中的概率为(  )
A.$\frac{1}{150}$B.$\frac{2}{752}$C.$\frac{2}{150}$D.$\frac{5}{752}$

分析 根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断每个人入选的概率是多少.

解答 解:根据简单随机抽样与系统抽样方法的特点,得;
每个人入选的概率都相等,且等于$\frac{5}{752}$,
故选:B.

点评 本题考查了简单随机抽样与系统抽样方法的应用问题,也考查了概率的意义问题,是基础题目

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某路口的红绿灯,红灯时间为30秒,黄灯时间为5秒,绿灯时间为40秒,假设你在任何时间到达该路口是等可能的,则当你到达该路口时,看见不是黄灯的概率是(  )
A.$\frac{14}{15}$B.$\frac{1}{15}$C..$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=ex(2x-3)-ax2+2ax+b,若函数 f(x)存在两个极值点x1,x2,且极小值点x1大于极大值点x2,则实数a的取值范围是(  )
A.$({0,\frac{1}{2}})∪({2{e^{\frac{3}{2}}},+∞})$B.$({-∞,\frac{1}{2}})∪({4{e^{\frac{3}{2}}},+∞})$C.$({-∞,2{e^{\frac{3}{2}}}})$D.$({-∞,1})∪({4{e^{\frac{3}{2}}},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B是半径为$2\sqrt{3}$的球面上的两点,过AB作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB的长度是(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,圆M和圆N与直线l:y=kx分别相切于A、B,与x轴相切,并且圆心连线与l交于点C,若|OM|=|ON|且$\overrightarrow{AC}$=2$\overrightarrow{CB}$,则实数k的值为(  )
A.1B.$\frac{3}{4}$C.$\sqrt{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数 $a={log_2}3{,^{\;}}b=\int_1^2{({x+\frac{1}{x}})}dx{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数$a={log_2}3{,^{\;}}b={({\frac{1}{3}})^2}{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f (x)满足:f ( p+q)=f ( p) f (q),f (1)=3,则$\frac{{{{[f(1)]}^2}+f(2)}}{f(1)}$+$\frac{{{{[f(2)]}^2}+f(4)}}{f(3)}$+$\frac{{{{[f(3)]}^2}+f(6)}}{f(5)}$+$\frac{{{{[f(4)]}^2}+f(8)}}{f(7)}$+$\frac{{{{[f(5)]}^2}+f(10)}}{f(9)}$的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.公差不为0的等差数列{an}的前n项和为Sn,若a6=3a4,且S10=λa4,则λ的值为(  )
A.15B.21C.23D.25

查看答案和解析>>

同步练习册答案