设椭圆的方程为
,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线
与
能否垂直?若能,
之间满足什么关系;若不能,说明理由;
(2)已知
为
的中点,且
点在椭圆上.若
,求椭圆的离心率.
(1)直线
与
不能垂直;(2)![]()
【解析】
试题分析:(1)设直线
的方程为
,与椭圆方程联立,消去
整理为关于
的一元二次方程,因为有两个交点则判别式应大于0,由韦达定理可得根与系数的关系,用中点坐标公式求点
的坐标。求出直线
的斜率,假设两直线垂直则斜率相乘等于
,解出
的关系式,根据关系式及椭圆中
的关系判断假设成立与否。(2)∵M为ON的中点,M为AB的中点,∴四边形OANB为平行四边形.
∵
,∴四边形OANB为矩形,∴
,转化为向量问题,可得
的关系式。由中点坐标公式可得点
的坐标,将其代入椭圆方程,与上式联立消去
即可得
之间满足的关系式。将
代入
之间的关系式,可求其离心率。
试题解析:解答:(1)∵斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
∴可以设直线
的方程为
.
∵
,∴
,
∴
. ① 1分
∵直线
与椭圆相交于
两点,∴![]()
![]()
. ② 2分
且
. ③ 3分
∵
为线段
的中点,∴
,
∴
,∴
. 4分
假设直线
与
能垂直.
∵直线
的斜率为1,∴直线
的斜率为-1,
∴
,∴
. 5分
∵在椭圆方程
中,
,
∴假设不正确,在椭圆中直线
与
不能垂直. 6分
(2)∵M为ON的中点,M为AB的中点,∴四边形OANB为平行四边形.
∵
,∴四边形OANB为矩形,∴
, 7分
∴
,∴
,∴
,
∴
,
∴
,整理得
. 8分
∵
点在椭圆上,∴
,∴
. 9分
此时
,满足
,
消去
得
,即
. 10分
设椭圆的离心率为e,则
,∴
,
∴
,∴
,
∴
,∵
,∴
.
考点:1直线与椭圆的位置关系;2直线垂直时斜率的关系;3转化思想。
科目:高中数学 来源:2015届重庆市高二上学期期末考试理科数学试卷(解析版) 题型:选择题
已知双曲线
的右焦点为
,若过点
且倾斜角为
的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015届辽宁省沈阳市高二质量监测理科数学试卷(解析版) 题型:选择题
已知ABCD是四面体,且O为△BCD内一点,则
是O为△BCD的重心的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
查看答案和解析>>
科目:高中数学 来源:2015届辽宁省沈阳市高二质量监测文科数学试卷(解析版) 题型:填空题
在等差数列
中,当![]()
时,
必定是常数数列. 然而在等比数列
中,对某些正整数r、s
,当
时,
可以不是常数列,试写出非常数数列
的一个通项公式 .
查看答案和解析>>
科目:高中数学 来源:2015届辽宁大连普通高中高二上学期期末考试文数学卷(解析版) 题型:解答题
不等式
解集为
,不等式
解集为
,不等式![]()
解集为
.
(1)求
;
(2)若“
”是“
”的充分条件,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com