精英家教网 > 高中数学 > 题目详情
1.某学校开设A类选修课3门,B类选修课4门,一位同学从中一共选3门,要求两类课必须选一门,则不同选法共(  )
A.30种B.35种C.42种D.48种

分析 根据题意,要求两类课程中各至少选一门,分两种情况讨论:①A类选修课选1门,B类选修课选2门;②A类选修课选2门,B类选修课选1门;由组合数公式求出每种情况的选法数目,根据分类计数原理得到结果.

解答 解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;
②A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.
∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.
故要求两类课程中各至少选一门,则不同的选法共有30种.
故选:A.

点评 本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想,解答的关键是根据题意确定分类讨论的依据,做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:
ab(万吨)c(百万元)
A50%13
B70%0.56
某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨),求购买铁矿石的最少费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.使cosx=1-m有意义的m的取值范围为(  )
A.m≥0B.0≤m≤2C.-1<m<1D.m<-1或m>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ACB中,∠ACB=120°,AC=BC=3,点O在BC边上,且圆O与AB相切于点D,BC与圆O相交于点E,C,则∠EDB=30°,BE=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.长时间用手机上网严重影响着学生的健康,如果学生平均每周手机上网的时长超过5小时,则称为“过度用网”.某校为了解A,B两班学生手机上网的情况,分别从这两个班中随机抽取6名同学作为样本进行调查,由样本数据统计得到A,B两班学生“过度用网”的概率分别为$\frac{1}{3}$,$\frac{1}{2}$.
(1)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;
(2)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是(  )(单位:m)
A.10$\sqrt{2}$B.10$\sqrt{6}$C.10$\sqrt{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,且满足S13=104,公差d∈N*
(1)若a2,a5,a11成等比数列,求数列{an}的通项公式;
(2)是否存在数列{an},使得对任意的m∈N*,am+am+1仍然是数列{an}中的一项?若存在,求出所有满足条件的公差d;若不存在,说明理由;
(3)设数列{bn}的每一列都是正整数,且b1=5,b2=7<b3,若数列{abn}是等比数列,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复数z=(2m2-3m-2)+(m2-3m+2)i.当实数m取什么值时,复数z是:
(1)0;   
(2)虚数     
(3)复平面内满足y=-x的点对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.有一块多边形的菜地它的水平放置的平面图形的斜二测直观图是直角梯形,如图所示∠ABC=45°AB=2,AD=1,DC⊥BC,则这块菜地的面积为.(  )
A.2+2$\sqrt{2}$B.4+2$\sqrt{2}$C.1+$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

同步练习册答案