精英家教网 > 高中数学 > 题目详情
6.已知复数z=(2m2-3m-2)+(m2-3m+2)i.当实数m取什么值时,复数z是:
(1)0;   
(2)虚数     
(3)复平面内满足y=-x的点对应的复数.

分析 根据复数的有关概念分别进行求解即可.

解答 解:(1)若z=0则$\left\{\begin{array}{l}{2{m}^{2}-3m-2=0}\\{{m}^{2}-3m+2=0}\end{array}\right.$,解得m=2;   
(2)若复数为虚数,则m2-3m+2≠0,
解得m≠2且m≠1.
(3)复平面内复数对应的坐标为(2m2-3m-2,m2-3m+2),
则m2-3m+2=-(2m2-3m-2)
解得m=2或m=0.

点评 本题主要考查复数的有关概念,根据条件建立不同的方程或不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,如果sinA=$\sqrt{3}$sinC,B=30°,那么角A=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某学校开设A类选修课3门,B类选修课4门,一位同学从中一共选3门,要求两类课必须选一门,则不同选法共(  )
A.30种B.35种C.42种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足4an=an-1-3(n≥2)且n∈N*,且a1=-$\frac{3}{4}$,设bn+2=3log${\;}_{\frac{1}{4}}$(an+1)(n∈N*),数列{cn}满足cn=(an+1)bn
(Ⅰ)求证{an+1}是等比数列并求出数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Sn
(Ⅲ)对于任意n∈N*,t∈[0,1],cn≤tm2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x,y)=(x-y)2+(4+$\sqrt{1-{x^2}}$+$\sqrt{1-\frac{y^2}{9}}$)2,则f(x,y)的最大值为$28+6\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2-x+7,求f′(4)=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的顶点坐标分别为A(1,1),B(m,1),C(4,5),
(1)若m=5,求cos2A;
(2)若∠ABC为直角,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}和单调递减数列{bn}(n∈N*),{bn}通项公式为bn=λn2+a7•n.若a3,a11是方程x2-x-2=0的两根,则实数λ的取值范围是(  )
A.(-∞,-3)B.$({-∞,-\frac{1}{6}})$C.$({-\frac{1}{6},+∞})$D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M($\sqrt{3}$,2)为双曲线C右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案