| A. | 2+2$\sqrt{2}$ | B. | 4+2$\sqrt{2}$ | C. | 1+$\sqrt{2}$ | D. | 1+$\sqrt{2}$ |
分析 以O点为坐标原点,在直观图中建立平面直角坐标系,按斜二测画直观图的原则,找到四边形ABCD的四个顶点在平面直角坐标系下对应的点,即把直观图中的点还原回原图形中,连结后得到原图形,然后利用梯形面积公式求解.
解答
解:如图,
直观图四边形的边BC在x′轴上,在原坐标系下在x轴上,长度不变,
点A在y′轴上,在原图形中在y轴上,且BE长度为AB长的2倍,过E作EF∥x轴,
且使EF长度等于AD,则点F为点D在原图形中对应的点.
∴四边形EBCF为四边形ABCD的原图形.
在直角梯形ABCD中,由AB=2,AD=1,得BC=$\sqrt{2}$+1.
∴四边形EBCF的面积S=$\frac{1}{2}$(EF+BC)•BE=$\frac{1}{2}$(1+$\sqrt{2}$+1)×4=4+2$\sqrt{2}$.
故选:B.
点评 本题考查了水平放置的平面图形的直观图的画法,考查了原图形和直观图面积之间的关系,最好记住结论:$\frac{{S}_{原图}}{{S}_{直观图}}$=2$\sqrt{2}$,该题是基础题
科目:高中数学 来源: 题型:选择题
| A. | 30种 | B. | 35种 | C. | 42种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3) | B. | $({-∞,-\frac{1}{6}})$ | C. | $({-\frac{1}{6},+∞})$ | D. | (-3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V1>V2 | B. | V1<V2 | ||
| C. | V1=V2 | D. | V1,V2无明确大小关系 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com