17£®ÒÑÖªº¯Êýf£¨x£©=xlnx£¬g£¨x£©=$\frac{a}{2}{x^2}$+x-a£¨a¡ÊR£©£®
£¨¢ñ£©ÈôÖ±Ïßx=m£¨m£¾0£©ÓëÇúÏßy=f£¨x£©ºÍy=g£¨x£©·Ö±ð½»ÓÚM£¬NÁ½µã£®ÉèÇúÏßy=f£¨x£©ÔÚµãM´¦µÄÇÐÏßΪl1£¬y=g£¨x£©ÔÚµãN´¦µÄÇÐÏßΪl2£®
£¨¢¡£©µ±m=eʱ£¬Èôl1¡Íl2£¬ÇóaµÄÖµ£»
£¨¢¢£©Èôl1¡Îl2£¬ÇóaµÄ×î´óÖµ£»
£¨¢ò£©É躯Êýh£¨x£©=f£¨x£©-g£¨x£©ÔÚÆä¶¨ÒåÓòÄÚÇ¡ÓÐÁ½¸ö²»Í¬µÄ¼«Öµµãx1£¬x2£¬ÇÒx1£¼x2£®Èô¦Ë£¾0£¬ÇÒ¦Ëlnx2-¦Ë£¾1-lnx1ºã³ÉÁ¢£¬Çó¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©£¨i£©f£¨x£©µÄ¶¨ÒåÓòΪ{x|x£¾0}£¬f¡ä£¨x£©=1+lnx£¬g¡ä£¨x£©=ax+1£¬µ±m=eʱ£¬f¡ä£¨e£©=1+lne=2£¬g¡ä£¨e£©=ae+1£¬ÓÉl1¡Íl2£¬ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒåµÃf¡ä£¨e£©g¡ä£¨e£©=2£¨ae+1£©=-1£¬ÓÉ´ËÄÜÇó³öa£®
£¨ii£©f¡ä£¨m£©=1+lnm£¬g¡ä£¨m£©=am+1£¬ÓÉl1¡Îl2£¬µÃlnm=amÔÚ£¨0£¬+¡Þ£©ÉÏÓн⣬´Ó¶øa=$\frac{lnm}{m}$£¬ÁîF£¨x£©=$\frac{lnx}{x}$£¨x£¾0£©£¬ÓÉ${F}^{'}£¨x£©=\frac{1-lnx}{{x}^{2}}$=0£¬µÃx=e£¬ÀûÓõ¼ÊýÐÔÖÊÇó³öF£¨x£©max=F£¨e£©=$\frac{1}{e}$£¬ÓÉ´ËÄÜÇó³öaµÄ×î´óÖµ£®
£¨¢ò£©h£¨x£©=xlnx-$\frac{a}{2}{x}^{2}$-x+a£¬£¨x£¾0£©£¬h¡ä£¨x£©=lnx-ax£¬´Ó¶øx1£¬x2ÊÇ·½³Ìlnx-ax=0µÄÁ½¸ö¸ù£¬½ø¶øa=$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$£¬ÍƵ¼³ö$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$£¾$\frac{1+¦Ë}{{x}_{1}+¦Ë{x}_{2}}$£¬´Ó¶øln$\frac{{x}_{1}}{{x}_{2}}$£¼$\frac{£¨1+¦Ë£©£¨{x}_{1}-{x}_{2}£©}{{x}_{1}+¦Ë{x}_{2}}$£¬Áît=$\frac{{x}_{1}}{{x}_{2}}$£¬Ôòt¡Ê£¨0£¬1£©£¬´Ó¶ølnt£¼$\frac{£¨1+¦Ë£©£¨t-1£©}{t+¦Ë}$ÔÚt¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬Áî¦Õ£¨t£©=lnt-$\frac{£¨1+¦Ë£©£¨t-1£©}{t+¦Ë}$£¬Ôò¦Õ¡ä£¨t£©=$\frac{1}{t}-\frac{£¨1+¦Ë£©^{2}}{£¨t+¦Ë£©^{2}}$=$\frac{£¨t-1£©£¨t-{¦Ë}^{2}£©}{t£¨t+¦Ë£©^{2}}$£¬Óɴ˸ù¾Ý¦Ë2¡Ý1ºÍ¦Ë2£¼1·ÖÀàÌÖÂÛ£¬ÀûÓõ¼ÊýÐÔÖÊÄÜÇó³ö¦ËµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©£¨i£©¡ßº¯Êýf£¨x£©=xlnx£¬¡àf£¨x£©µÄ¶¨ÒåÓòΪ{x|x£¾0}£¬f¡ä£¨x£©=1+lnx£¬
¡ßg£¨x£©=$\frac{a}{2}{x^2}$+x-a£¨a¡ÊR£©£¬¡àg¡ä£¨x£©=ax+1£¬
µ±m=eʱ£¬f¡ä£¨e£©=1+lne=2£¬g¡ä£¨e£©=ae+1£¬
¡ßl1¡Íl2£¬¡àf¡ä£¨e£©g¡ä£¨e£©=2£¨ae+1£©=-1£¬
½âµÃa=-$\frac{3}{2e}$£®
£¨ii£©¡ßº¯Êýf£¨x£©=xlnx£¬¡àf£¨x£©µÄ¶¨ÒåÓòΪ{x|x£¾0}£¬f¡ä£¨x£©=1+lnx£¬
¡ßg£¨x£©=$\frac{a}{2}{x^2}$+x-a£¨a¡ÊR£©£¬¡àg¡ä£¨x£©=ax+1£¬
¡àf¡ä£¨m£©=1+lnm£¬g¡ä£¨m£©=am+1£¬
¡ßl1¡Îl2£¬¡àf¡ä£¨m£©=g¡ä£¨m£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓн⣬
¡àlnm=amÔÚ£¨0£¬+¡Þ£©ÉÏÓн⣬
¡ßm£¾0£¬¡àa=$\frac{lnm}{m}$£¬
ÁîF£¨x£©=$\frac{lnx}{x}$£¨x£¾0£©£¬Ôò${F}^{'}£¨x£©=\frac{1-lnx}{{x}^{2}}$=0£¬½âµÃx=e£¬
µ±x¡Ê£¨0£¬e£©Ê±£¬F¡ä£¨x£©£¾0£¬F£¨x£©ÎªÔöº¯Êý£¬
µ±x¡Ê£¨e£¬+¡Þ£©Ê±£¬F¡ä£¨x£©£¼0£¬F£¨x£©Îª¼õº¯Êý£¬
¡àF£¨x£©max=F£¨e£©=$\frac{1}{e}$£¬
¡àaµÄ×î´óֵΪ$\frac{1}{e}$£®
£¨¢ò£©h£¨x£©=xlnx-$\frac{a}{2}{x}^{2}$-x+a£¬£¨x£¾0£©£¬h¡ä£¨x£©=lnx-ax£¬
¡ßx1£¬x2Ϊh£¨x£©ÔÚÆä¶¨ÒåÓòÄÚµÄÁ½¸ö²»Í¬µÄ¼«Öµµã£¬
¡àx1£¬x2ÊÇ·½³Ìlnx-ax=0µÄÁ½¸ö¸ù£¬¼´lnx1=ax1£¬lnx2=ax2£¬
Á½Ê½×÷²î£¬²¢ÕûÀí£¬µÃ£ºa=$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$£¬
¡ß¦Ë£¾0£¬0£¼x1£¼x2£¬
ÓɦËlnx2-¦Ë£¾1-lnx1£¬µÃ1+¦Ë£¼lnx1+¦Ëlnx2£¬
Ôò1+¦Ë£¼a£¨x1+¦Ëx2£©£¬¡àa£¾$\frac{1+¦Ë}{{x}_{1}+¦Ë{x}_{2}}$£¬¡à$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$£¾$\frac{1+¦Ë}{{x}_{1}+¦Ë{x}_{2}}$£¬
¡àln$\frac{{x}_{1}}{{x}_{2}}$£¼$\frac{£¨1+¦Ë£©£¨{x}_{1}-{x}_{2}£©}{{x}_{1}+¦Ë{x}_{2}}$£¬
Áît=$\frac{{x}_{1}}{{x}_{2}}$£¬Ôòt¡Ê£¨0£¬1£©£¬ÓÉÌâÒâÖª£º
lnt£¼$\frac{£¨1+¦Ë£©£¨t-1£©}{t+¦Ë}$ÔÚt¡Ê£¨0£¬1£©ÉϺã³ÉÁ¢£¬
Áî¦Õ£¨t£©=lnt-$\frac{£¨1+¦Ë£©£¨t-1£©}{t+¦Ë}$£¬Ôò¦Õ¡ä£¨t£©=$\frac{1}{t}-\frac{£¨1+¦Ë£©^{2}}{£¨t+¦Ë£©^{2}}$=$\frac{£¨t-1£©£¨t-{¦Ë}^{2}£©}{t£¨t+¦Ë£©^{2}}$£¬
¢Ùµ±¦Ë2¡Ý1ʱ£¬¼´¦Ë¡Ý1ʱ£¬?t¡Ê£¨0£¬1£©£¬¦Õ¡ä£¨t£©£¾0£¬
¡à¦Õ£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
ÓÖ¦Õ£¨1£©=0£¬Ôò¦Õ£¨t£©£¼0ÔÚ£¨0£¬1£©ÉϺã³ÉÁ¢£®
¢Úµ±¦Ë2£¼1£¬¼´0£¼¦Ë£¼1ʱ£¬t¡Ê£¨0£¬¦Ë2£©Ê±£¬¦Õ¡ä£¨t£©£¾0£¬¦Õ£¨t£©ÔÚ£¨0£¬¦Ë2£©ÉÏÊÇÔöº¯Êý£»
µ±t¡Ê£¨¦Ë2£¬1£©Ê±£¬¦Õ¡ä£¨t£©£¼0£¬¦Õ£¨t£©ÔÚ£¨¦Ë2£¬1£©ÉÏÊǼõº¯Êý£®
ÓÖ¦Õ£¨1£©=0£¬¡à¦Õ£¨t£©²»ºãСÓÚ0£¬²»ºÏÌâÒ⣮
×ÛÉÏ£¬¦ËµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒå¡¢µ¼ÊýÐÔÖÊ¡¢¹¹Ôì·¨¡¢º¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢·ÖÀàÓëÕûºÏ˼Ï룬¿¼²é´´ÐÂÒâʶ¡¢Ó¦ÓÃÒâʶ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þÀíÉϵÚÒ»´ÎÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Ò»¸öÇòÌå¾­¹ýÇиîºó£¬Ê£Ï²¿·Ö¼¸ºÎÌåµÄÈýÊÓͼÈçÓÒͼËùʾ£¬Ôòʣϲ¿·Ö¼¸ºÎÌåµÄÌå»ýΪ£¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýf£¨x£©¶ÔÈÎÒâµÄʵÊýx¾ùÂú×ãf£¨x£©=-f£¨2-x£©£¬ÇÒÔÚ[1£¬+¡Þ£©ÉϵÝÔö£¬g£¨x£©=f£¨1+x£©£¬ÇÒ2g£¨log2a£©-3g£¨1£©¡Üg£¨log${\;}_{\frac{1}{2}}$a£©£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨0£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄnֵΪ£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªx£¬yÂú×ã$\left\{\begin{array}{l}x-y+2¡Ý0\\ x+y¡Ü2\\ x¡Ü3\end{array}\right.$£¬Ôòz=2x+yµÄ×î´óֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô¸´ÊýzÂú×㣨1+i£©z=2i£¬ÆäÖÐiΪÐéÊýµ¥Î»£¬Ôò$\overline z$£¨¡¡¡¡£©
A£®1-iB£®1+iC£®2-2iD£®2+2i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª£¨$\overline{z}$-1+3i£©£¨2-i£©=4+3i£¨ÆäÖÐiÊÇÐéÊýµ¥Î»£©£¬ÔòzµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ö´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬ÔòÊä³öxµÄÖµÊÇ£¨¡¡¡¡£©
A£®2016B£®1024C£®$\frac{1}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÊýÁÐ{an}Âú×㣺an=$\left\{\begin{array}{l}{1£¬1¡Ün¡Ü2016}\\{2•£¨\frac{1}{3}£©^{n-2016}£¬n¡Ý2017}\end{array}\right.$£¬ÉèSn±íʾÊýÁÐ{an}µÄǰnÏîºÍ£®ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\lim_{n¡ú¡Þ}{a_n}$ºÍ$\lim_{n¡ú¡Þ}{S_n}$¶¼´æÔÚB£®$\lim_{n¡ú¡Þ}{a_n}$ºÍ$\lim_{n¡ú¡Þ}{S_n}$¶¼²»´æÔÚ
C£®$\lim_{n¡ú¡Þ}{a_n}$´æÔÚ£¬$\lim_{n¡ú¡Þ}{S_n}$²»´æÔÚD£®$\lim_{n¡ú¡Þ}{a_n}$²»´æÔÚ£¬$\lim_{n¡ú¡Þ}{S_n}$´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸