精英家教网 > 高中数学 > 题目详情
9.已知($\overline{z}$-1+3i)(2-i)=4+3i(其中i是虚数单位),则z的虚部为(  )
A.1B.-1C.iD.-i

分析 利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.

解答 解:∵($\overline{z}$-1+3i)(2-i)=4+3i,
∴$\overline{z}$-1+3i=$\frac{4+3i}{2-i}$=$\frac{(4+3i)(2+i)}{(2-i)(2+i)}$=1+2i,
∴$\overrightarrow{z}$=2-i,
∴z=2+i,
∴z的虚部为1,
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年四川省高二上学期期中考数学试卷(解析版) 题型:解答题

设函数

(1)求的定义域;

(2)时,求使的所有值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一种腌菜食品按行业生产标准分为A,B,C三个等级,现针对某加工厂同一批次的三个等级420箱腌菜进行质量检测,采用分层抽样的方法进行抽取.设从三个等级A,B,C中抽取的箱数分别为m,n,t,若2t=m+n,则420箱腌菜中等级为C级的箱数为(  )
A.110B.120C.130D.140

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx,g(x)=$\frac{a}{2}{x^2}$+x-a(a∈R).
(Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1,y=g(x)在点N处的切线为l2
(ⅰ)当m=e时,若l1⊥l2,求a的值;
(ⅱ)若l1∥l2,求a的最大值;
(Ⅱ)设函数h(x)=f(x)-g(x)在其定义域内恰有两个不同的极值点x1,x2,且x1<x2.若λ>0,且λlnx2-λ>1-lnx1恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的图象如图所示,为了得到g(x)=Asinωx的图象,可以将f(x)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={log_5}4,b={log_{\sqrt{2}}}3,c={({{{log}_{0.2}}3})^2}$,则a,b,c的大小关系为(  )
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a=({1,1}),\overrightarrow b=({-1,0})$,若向量$k\overrightarrow a+\overrightarrow b$与向量$\overrightarrow c=({2,1})$共线,则实数k=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ-$\frac{π}{4}$).
(1)求圆C的直角坐标方程;
(2)若点M(x,y)是直线l与圆面ρ≤4$\sqrt{2}$sin(θ-$\frac{π}{4}$)的公共点,求$\sqrt{2}$x+$\sqrt{2}$y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数$y=sin({\frac{π}{6}-2x})$的图象向右平移$\frac{π}{12}$个单位后得到的图象的一个对称轴是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{π}{3}$

查看答案和解析>>

同步练习册答案