精英家教网 > 高中数学 > 题目详情
18.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ-$\frac{π}{4}$).
(1)求圆C的直角坐标方程;
(2)若点M(x,y)是直线l与圆面ρ≤4$\sqrt{2}$sin(θ-$\frac{π}{4}$)的公共点,求$\sqrt{2}$x+$\sqrt{2}$y的取值范围.

分析 (1)圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ-$\frac{π}{4}$),ρ2=ρ•4$\sqrt{2}$sin(θ-$\frac{π}{4}$).展开ρ2=ρ•4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$(sinθ-cosθ).利用互化公式即可得出直角坐标方程.
(2)由x2+y2=4x-4y配方可得:(x-2)2+(y+2)2=8.设M坐标:$\left\{\begin{array}{l}{x=2+2\sqrt{2}rcosθ}\\{y=-2+2\sqrt{2}rsinθ}\end{array}\right.$,$(0≤r≤2\sqrt{2})$.再利用和差公式及其单调性值域即可得出.

解答 解:(1)圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ-$\frac{π}{4}$),ρ2=ρ•4$\sqrt{2}$sin(θ-$\frac{π}{4}$).
∴ρ2=ρ•4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$(sinθ-cosθ).
∴x2+y2=4x-4y.
(2)由x2+y2=4x-4y配方可得:(x-2)2+(y+2)2=8.
设M坐标:$\left\{\begin{array}{l}{x=2+2\sqrt{2}rcosθ}\\{y=-2+2\sqrt{2}rsinθ}\end{array}\right.$,$(0≤r≤2\sqrt{2})$.
∴$\sqrt{2}$x+$\sqrt{2}$y=$\sqrt{2}$$(2+2\sqrt{2}rcosθ)$+$\sqrt{2}$$(2+2\sqrt{2}rsinθ)$
=4$\sqrt{2}$+4$\sqrt{2}$rsin$(θ+\frac{π}{4})$∈$[0,8\sqrt{2}]$.

点评 本题考查了极坐标方程回去直角坐标方程、三角函数的单调性与值域、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)对任意的实数x均满足f(x)=-f(2-x),且在[1,+∞)上递增,g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),则实数a的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知($\overline{z}$-1+3i)(2-i)=4+3i(其中i是虚数单位),则z的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,则输出x的值是(  )
A.2016B.1024C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知扇形周长为8,面积为4,则圆心角为2弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},则∁UA={4,6,7,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足:an=$\left\{\begin{array}{l}{1,1≤n≤2016}\\{2•(\frac{1}{3})^{n-2016},n≥2017}\end{array}\right.$,设Sn表示数列{an}的前n项和.则下列结论正确的是(  )
A.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都存在B.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都不存在
C.$\lim_{n→∞}{a_n}$存在,$\lim_{n→∞}{S_n}$不存在D.$\lim_{n→∞}{a_n}$不存在,$\lim_{n→∞}{S_n}$存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A、B、C、D四点,若双曲线C1的一个焦点为F(-$\sqrt{2}$,0),且四边形ABCD的面积为$\frac{16}{3}$,则双曲线C1的离心率为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案