精英家教网 > 高中数学 > 题目详情
对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也为[a,b],则称函数y=f(x)在定义域D上封闭,如果函数f(x)=-
4x
1+|x|
在R上封闭,则b-a=
 
考点:函数的值域,函数的定义域及其求法
专题:函数的性质及应用
分析:先判断奇偶性,再判断单调性,解方程f(a)=b,f(b)=a即可
解答: 解:∵f(x)=-
4x
1+|x|
=
-4+
4
x+1
,x∈[0,+∞)
4+
4
x-1
,x∈(-∞,0)
,设0≤x1<x2
则f(x1)-f(x2)=
4(x2-x1)
(x1+1)(x2+1)
>0,故f(x)在[0,+∞)上是
单调递减函数,又∵f(x)=
4x
1+|x|
,∴f(-x)=-f(x),∴f(x)是奇函数.
所以f(x)在R上是单调递减函数,
而x∈[0,+∞)时,f(x)值域为(-4,0],x∈(-∞.0)时,f(x)值域为(0,4)
要使得y=f(x)在[a,b]上的值域也为[a,b],则a<0<b
f(a)=b
f(b)=a
,得
4+
4
a-1
=b
-4+
4
b+1
=a
,得
a=-3
b=3
,∴b-a=6
故答案为:6
点评:本题考查了函数单调性,奇偶性,函数值域,综合性较强
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R),
(1)若函数y=f(x)在点(2,f(2))处的切线斜率为1,求a的值;
(2)在(1)的条件下,对任意t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]在区间(t,3)总存在极值,求m的取值范围;
(3)若a=2,对于函数h(x)=(p-2)x-
p+2e
x
-3在[1,e]上至少存在一个x0使得h(x0)>f(x0)成立,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=
[x]
x
-a(x>0)有且仅有3个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△AOB中,∠AOB=90°,AO=h,OB=r,如图所示,先将△AOB绕AO所在直线旋转一周得到一个圆锥,再在该圆锥内旋转一个长宽都为
2
,高DD1=1的长方体CDEF-C1D1E1F1.若该长方体的顶点C,D,E,F都在圆锥的底面上,且顶点C1,D1,E1,F1都在圆锥的侧面上,则h+r的值至少应为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2cos2θ-4xsinθ+12对一切实数x均有f(x)>0成立,若0<θ<π,则θ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序的框图如图所示,执行该程序,若输入的P为24,则输出的n,S的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长为a,∠DAB=60°,
EC
=2
DE
,则
AE
DB
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,若a=9,b=6,A=60°,则sinB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x>1},B={x|2x<8},则A∩B=(  )
A、{x|x≤3}
B、{x|x>1}
C、{x|1<x<3}
D、{x|1<x<2}

查看答案和解析>>

同步练习册答案