精英家教网 > 高中数学 > 题目详情
已知a>0,b>0,c>0,求证:
(1)(
a
b
+
b
c
+
c
a
)(
b
a
+
c
b
+
a
c
)≥9;
(2)(a+b+c)(a2+b2+c2)≥9abc.
考点:不等式的证明
专题:选作题,不等式
分析:(1)利用柯西不等式,即可得出结论;
(2)利用基本不等式,即可证明结论.
解答: 证明:(1)∵(
a
b
×
b
a
+
b
c
×
c
b
+
c
a
×
a
c
)2=(1×1+1×1+1×1)2

又由柯西不等式得,(
a
b
×
b
a
+
b
c
×
c
b
+
c
a
×
a
c
)2=(1×1+1×1+1×1)2
≤[(
a
b
2+(
b
c
2+(
c
a
2][(
b
a
2+(
c
b
2+(
a
c
2]
∴有(
a
b
+
b
c
+
c
a
)(
b
a
+
c
b
+
a
c
)≥9

(2)∵a+b+c≥3
3abc
,又∵a2+b2+c2≥3
3a2b2c2

∴(a+b+c)(a2+b2+c2)≥9abc
点评:本题考查不等式的证明,正确运用不等式的证明方法是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a3=2,a5=1,若{
1
1+an
}是等差数列,则a11等于(  )
A、0
B、
1
6
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1在等腰梯形B中,AB∥CD,AB=2BC=2CD=2,E是AB的中点,F是DE的中点,沿直线DE将△ADE翻折,使二面角A-DE-B为60°(如图2).

(Ⅰ)证明:FC不可能与AB垂直;
(Ⅱ)取AB的中点G,求证:EG∥面AFC;
(Ⅲ)求AB与面BCDE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=
1
2
bc.
(1)求cosA的最小值;
(2)若cos(B-C)+cosA=1,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x2+8
x-1
(x>1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0)、B(2,0),点C在y轴的正半轴上,求∠ACB取最大值时,C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体P-ABC中,△PAB为边长为1的等边三角形,△PBC与△PAC均为斜边为PC的直角三角形,且PC=
3
.E、D分别为AB、PC的中点.
(1)求证:PE与AC不垂直;
(2)求异面直线PB与AD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) [80,85) [85,90) [90,95) [95,100)
频数(个) 10 50 20 15
(Ⅰ) 根据频数分布表计算草莓的重量在[90,95)的频率;
(Ⅱ) 用分层抽样的方法从重量在[80,85)和[95,100)的草莓中共抽取5个,其中重量在[80,85]的有几个?
(Ⅲ) 在(Ⅱ)中抽出的5个草莓中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
2x-x2
的单调区间.

查看答案和解析>>

同步练习册答案