精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=
1
2
bc.
(1)求cosA的最小值;
(2)若cos(B-C)+cosA=1,求角A.
考点:余弦定理,两角和与差的余弦函数
专题:解三角形
分析:(1)利用余弦定理表示出cosA,进而把a2=
1
2
bc代入,利用基本不等式求得其最小值.
(2)利用两角和与差的余弦函数对已知等式恒等变换整理可求得sinBsinC的值,利用已知和正弦定理求得sin2A的值,则A可求.
解答: 解:(1)cosA=
b2+c2-a2
2bc
=
b2+c2-
1
2
bc
2bc
=
b2+c2
2bc
-
1
4
≥1-
1
4
=
3
4
,当且仅当b=c时取等号.
∴cosA的最小值为
3
4

(2)cos(B-C)+cosA=cos(B-C)-cos(B+C)=cosBcosC+sinBsinC-cosBcosC+sinBsinC=2sinBsinC=1,
∵a2=
1
2
bc,
∴2sin2A=sinBsinC,
∴4sin2A=1,
∵0<A<π,
∴sinA=
1
2

∴A=
π
6
6
点评:本题主要考查了正弦定理和余弦定理的应用,基本不等式的性质.考查了学生基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读如图给出的程序框图,运行相应的程序,输出的结果S为(  )
A、-1007B、1007
C、1008D、-3022

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线Γ:x2=2my(m>0)和直线l:y=kx-m没有公共点(其中k,m为常数),动点P是直线l上的任意一点,过P点引抛物线Γ的两条切线,切点分别为M,N,且直线MN恒过点Q(k,1).
(1)求抛物线Γ的方程;
(2)已知O为坐标原点,连接PQ交抛物线Γ于A,B两点,且A点在线段PQ之间,求
PA
QB
+
PB
QA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,已知PA=PB,∠ABC为直角,点D,E分别为PB,BC的中点.
(Ⅰ)求证:AD⊥平面PBC;
(Ⅱ)若F在线段AC上,且
AF
FC
=
1
2
,求证:AD∥平面PEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种零件按质量标准分为1,2,3,4,5五个等级,现从-批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
等级 1 2 3 4 5
频率 0.05 m 0.15 0.35 n
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n的值;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.在晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)在这20个路段中,轻度拥堵、中度拥堵的路段各有多少个?
(2)从这20个路段中随机抽出3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,c>0,求证:
(1)(
a
b
+
b
c
+
c
a
)(
b
a
+
c
b
+
a
c
)≥9;
(2)(a+b+c)(a2+b2+c2)≥9abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x+
p
x
(p>0为常数)在(0,+∞﹚上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求多项式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展开式中的x3的系数.

查看答案和解析>>

同步练习册答案