精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$且目标函数z=ax+y仅在点(2,1)处取得最小值,则实数a的取值范围是(-2,1).

分析 作出约束条件对应的可行域,变形目标函数数形结合可得直线的斜率-a的范围,可得a的范围.

解答 解:作出约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$所对应的可行域(如图阴影△ABC),
变形目标函数可得y=-ax+z,要使仅在点A(2,1)处取得最小值,
直线的斜率-a需满足-1<-a<2,解得-2<a<1
故答案为:(-2,1).

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求证数列{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求Sn
(Ⅲ)设bn=$\frac{{S}_{n}-3}{{3}^{n}}$,试求数列{bn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)是一次函数,且f(f(x))=4x-1,则f(x)=(  )
A.2x-$\frac{1}{3}$B.2x-1C.-2x+1D.2x-$\frac{1}{3}$或-2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点(1,2)、(3,6)的直线的斜率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列五个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号,33号,46号同学在样本中,那么样本另一位同学的编号为23;
②一组数据1、2、3、3、4、5的平均数、众数、中位数相同;
③一组数据a、0、1、2、3,若该组数据的平均值为1,则样本标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为$\widehat{y}$=bx+a中a=2,$\overline{x}$=1,$\overline{y}$=3,则b=1;
⑤如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克,并且小于104克的产品的个数是90.
其中真命题为(  )
A.①②④B.②④⑤C.②③④D.③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=2,AC=3,$BC=\sqrt{10}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\sqrt{15}$C.$\frac{{3\sqrt{15}}}{4}$D.$\frac{{3\sqrt{6}}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={-$\frac{1}{3}$,$\frac{1}{2}$),B={x|mx=1}且B⊆A,则m的值为(  )
A.2B.-3C.2或-3D.2或-3或0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\vec a,\vec b$是夹角为60°的两单位向量,向量$\vec c⊥\vec a,\vec c⊥\vec b$,且$|\vec c|=1$,$\vec x=2\vec a-\vec b+\vec c,\vec y=-\vec a+3\vec b-\vec c$,则$cos<\vec x,\vec y>$=$-\frac{{5\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$若关于x的函数y=f2(x)-bf(x)+1有8个不同的零点,则实数b的取值范围是(2,$\frac{17}{4}$].

查看答案和解析>>

同步练习册答案