精英家教网 > 高中数学 > 题目详情
2.已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求证数列{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求Sn
(Ⅲ)设bn=$\frac{{S}_{n}-3}{{3}^{n}}$,试求数列{bn}的最大项.

分析 (Ⅰ)根据等差数列的定义,判断数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列,并写出它的通项公式以及{an}的通项公式;
(Ⅱ)根据数列{an}的前n项和定义,利用错位相减法求出Sn
(Ⅲ)根据{bn}的通项公式,求出最大项对应的项数n,即可求出{bn}的最大项.

解答 解:(Ⅰ)由an=2an-1+2n(n≥2且n∈N*).
得$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+1,
即{$\frac{{a}_{n}}{{2}^{n}}$}是首项为$\frac{1}{2}$,公差d=1的等差数列,
则$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$+(n-1)=n-$\frac{1}{2}$,
数列{an}的通项公式an=(2n-1)•2n-1
(Ⅱ)设数列{an}的前n项和为Sn,求Sn
∵an=(2n-1)•2n-1
∴Sn=1•20+3•21+5•22+…+(2n-1)•2n-1
2Sn=1•21+3•22+…+(2n-1)•2n
两式相减得-Sn=1+2(21+22+…+2n-1)-(2n-1)•2n
=1+$\frac{{2}^{2}(1-{2}^{n+1})}{1-2}$-(2n-1)•2n
=-3+(3-2n)•2n
∴Sn=(2n-3)•2n+3;
(Ⅲ)∵bn=$\frac{{S}_{n}-3}{{3}^{n}}$,∴bn═(2n-3)•($\frac{2}{3}$)n
由$\left\{\begin{array}{l}{{b}_{n}{≥b}_{n+1}}\\{{b}_{n}{≥b}_{n-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{(2n-3){•(\frac{2}{3})}^{n}≥(2n-1){•(\frac{2}{3})}^{n+1}}\\{(2n-3)•(\frac{2}{3}){•(\frac{2}{3})}^{n}≥(2n-5){•(\frac{2}{3})}^{n-1}}\end{array}\right.$,
解得$\frac{7}{2}$≤n≤$\frac{9}{2}$,即n=4,
即数列{bn}的最大项为bn=$\frac{80}{81}$.

点评 本题考查了等差与等比数列的定义、通项公式与前n项和公式的应用问题,也考查了错位相减法求数列的个项和的问题,考查了不等式的解法与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{si{n}^{3}(-α)cos(α+5π)tan(α+2π)}{co{s}^{3}(-2π-α)sin(-α-π)ta{n}^{3}(4π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}首项是a1=1,且满足递推关系${a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$.
(1)证明:数列$\left\{{\frac{a_n}{2^n}}\right\}$是等差数列,并求数列{an}的通项公式;
(2)求等差数列$\left\{{b_n}\right\}(n∈{N^*})$使得对一切自然数n∈N*都有如下的等式成立:${b_1}C_n^0+{b_2}C_n^1+{b_3}C_n^2+…+{b_{n+1}}C_n^n={a_{n+1}}$;
(3)cn=nbn,是否存在正常数M使得$\frac{c_1}{a_1}+\frac{c_2}{a_2}+…+\frac{c_n}{a_n}<M$对n∈N*恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,根据下列条件解三角形,其中有一解的是(  )
A.b=7,c=3,C=30°B.b=5,c=4$\sqrt{2}$,B=45°C.a=6,b=6$\sqrt{3}$,B=60°D.a=20,b=30,A=30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)计算${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}$4
(2)已知tanα=$\sqrt{3},π<α<\frac{3}{2}$π,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对任意x∈[a,b],均有|f(x)-g(x)|<1,那么我们称f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(kx+1)与g(x)=log2x在闭区间[1,2]上是接近的,则实数k的一个可能值是(0,1)中的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面单位向量,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow b•\overrightarrow{e_1}=2,\overrightarrow b•\overrightarrow{e_2}=\frac{5}{2}$,则$|{\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果α在第三象限,则$\frac{α}{3}$一定不在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$且目标函数z=ax+y仅在点(2,1)处取得最小值,则实数a的取值范围是(-2,1).

查看答案和解析>>

同步练习册答案