精英家教网 > 高中数学 > 题目详情
7.对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对任意x∈[a,b],均有|f(x)-g(x)|<1,那么我们称f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(kx+1)与g(x)=log2x在闭区间[1,2]上是接近的,则实数k的一个可能值是(0,1)中的值.

分析 若f(x)=log2(kx+1)与g(x)=log2x在闭区间[1,2]上是接近的,则对任意x∈[1,2],均有|f(x)-g(x)|<1,即$\frac{\frac{1}{2}x-1}{x}<k<\frac{2x-1}{x}$恒成立,进而得到k的取值范围.

解答 解:∵f(x)=log2(kx+1)与g(x)=log2x在闭区间[1,2]上是接近的,
∴对任意x∈[1,2],均有|f(x)-g(x)|<1,即|log2(kx+1)-log2x|<1,
即-1<${log}_{2}\frac{kx+1}{x}$<1,即$\frac{1}{2}<\frac{kx+1}{x}<2$,即$\frac{\frac{1}{2}x-1}{x}<k<\frac{2x-1}{x}$恒成立,
当x∈[1,2]时,$\frac{\frac{1}{2}x-1}{x}$∈[-$\frac{1}{2}$,0],$\frac{2x-1}{x}$∈[1,$\frac{3}{2}$],
故k∈(0,1),
故答案为:(0,1)

点评 本题以命题的真假判断与应用为载体,考查了函数的单调性,恒成立问题,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{x}^{2}-ax+{b}^{2}}{x+a}$(x∈[0,+∞),其中a>0,b∈R.记M(a,b)为f(x)的最小值.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求a的取值范围,使得存在b,满足M(a,b)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i是虚数单位,若复数z满足z(1+i)=(1-i),则复数z的模|z|=(  )
A.-1B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1;③f($\frac{x}{3}$)=$\frac{1}{2}$f(x).则f($\frac{1}{3}$)+f($\frac{5}{12}$)的值(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求证数列{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求Sn
(Ⅲ)设bn=$\frac{{S}_{n}-3}{{3}^{n}}$,试求数列{bn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,则a的取值范围是(  )
A.0<a<1B.0≤a≤1C.0<a≤1D.0≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C经过点A(3,2)和B(3,6).
(I)求面积最小的圆C的方程;
(Ⅱ)若直线l过定点T(1,0),且与(I)中的圆C相切,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=lncosx(-$\frac{π}{2}$<x<$\frac{π}{2}$)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=2,AC=3,$BC=\sqrt{10}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\sqrt{15}$C.$\frac{{3\sqrt{15}}}{4}$D.$\frac{{3\sqrt{6}}}{16}$

查看答案和解析>>

同步练习册答案