精英家教网 > 高中数学 > 题目详情
3.若函数f(x)是一次函数,且f(f(x))=4x-1,则f(x)=(  )
A.2x-$\frac{1}{3}$B.2x-1C.-2x+1D.2x-$\frac{1}{3}$或-2x+1

分析 设一次函数f(x)=ax+b,由待定系数法可得.

解答 解:设一次函数f(x)=ax+b,
∵f(f(x))=4x-1,
∴a(ax+b)+b=4x-1,
∴$\left\{\begin{array}{l}{{a}^{2}=4}\\{ab+b=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=2}\\{b=-\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=1}\end{array}\right.$,
∴f(x)=2x-$\frac{1}{3}$或-2x+1
故选:D

点评 本题考查待定系数法求一次函数的解析式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}首项是a1=1,且满足递推关系${a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$.
(1)证明:数列$\left\{{\frac{a_n}{2^n}}\right\}$是等差数列,并求数列{an}的通项公式;
(2)求等差数列$\left\{{b_n}\right\}(n∈{N^*})$使得对一切自然数n∈N*都有如下的等式成立:${b_1}C_n^0+{b_2}C_n^1+{b_3}C_n^2+…+{b_{n+1}}C_n^n={a_{n+1}}$;
(3)cn=nbn,是否存在正常数M使得$\frac{c_1}{a_1}+\frac{c_2}{a_2}+…+\frac{c_n}{a_n}<M$对n∈N*恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面单位向量,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow b•\overrightarrow{e_1}=2,\overrightarrow b•\overrightarrow{e_2}=\frac{5}{2}$,则$|{\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果α在第三象限,则$\frac{α}{3}$一定不在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若对于一切实数x∈[1,3],不等式mx+$\frac{4m}{x}$-2<0恒成立,则m的取值范围是(-∞,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)={log_2}({1+x})+{({1-x})^{\frac{1}{2}}}$的定义域是(  )
A.(-1,0)B.(-1,1]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值为4,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$且目标函数z=ax+y仅在点(2,1)处取得最小值,则实数a的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$f(x)=\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}\right.$在定义域R上是增函数,则a的取值范围是$a≤\frac{1}{2}$.

查看答案和解析>>

同步练习册答案