精英家教网 > 高中数学 > 题目详情
18.下列各式中最小值为2的是(  )
A.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$B.$\frac{b}{a}$+$\frac{a}{b}$C.$\frac{a+b+2\sqrt{ab}+1}{\sqrt{a}+\sqrt{b}}$D.sinx+$\frac{1}{sinx}$

分析 变形利用基本不等式的性质即可得出.

解答 解:A.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$>2,不正确;
B.ab<0时,其最小值小于0,不正确;
C.$\frac{a+b+2\sqrt{ab}+1}{\sqrt{a}+\sqrt{b}}$=$\frac{(\sqrt{a}+\sqrt{b})^{2}+1}{\sqrt{a}+\sqrt{b}}$=$(\sqrt{a}+\sqrt{b})$+$\frac{1}{\sqrt{a}+\sqrt{b}}$≥2,当且仅当$\sqrt{a}+\sqrt{b}$=1时取等号,满足题意.
D.sinx<0时,其最小值小于0,不正确.
故选:C.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.根据已知函数y=x2-2x-3的图象,试作出下列各函数的图象:
(1)函数y=-x2+2x+3;
(2)向左平移2个单位;
(3)向上平移2个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.有10名三好学生名额,分配给高二级6个班(可以分到一个班),有多少种分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在(x2-$\frac{a}{x}$)5的二项展开式中,x的一次项系数是-10,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若动点M(x,y)始终满足关系式$\sqrt{{x}^{2}+(y+2)^{2}}$+$\sqrt{{x}^{2}+(y-2)^{2}}$=8,则动点N的轨迹方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{12}$=1B.$\frac{x^2}{12}+\frac{y^2}{16}$=1C.$\frac{x^2}{12}-\frac{y^2}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=sin(2x-\frac{π}{6})$.
(I)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)当$x∈[{0,\frac{2π}{3}}]$时,求函数f(x)的最小值,并求出使y=f(x)取得最小值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\frac{3}{x}$-1
(Ⅰ)求f(0),f(-2)的值
(Ⅱ)用函数单调性的定义证明函数f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若将函数f(x)=x6表示为f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6为实数,则a3等于 (  )
A.20B.15C.-15D.-20

查看答案和解析>>

同步练习册答案