精英家教网 > 高中数学 > 题目详情
4.若圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线l的斜率是(  )
A.6B.$\frac{2}{3}$C.$-\frac{3}{2}$D.$-\frac{2}{3}$

分析 由题意可知直线通过圆的圆心,求出圆心坐标代入直线方程,即可得到a的值,然后求出直线的斜率.

解答 解:圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线通过圆心(3,-3),
故3a-12-6=0,∴a=6,
∴直线l的斜率k=-$\frac{3}{2}$,
故选:C.

点评 本题是基础题,考查直线与圆的位置关系,考查对称知识、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设甲:m,n满足$\left\{\begin{array}{l}{2<m+n<4}\\{0<mn<3}\end{array}\right.$,乙:m,n满足$\left\{\begin{array}{l}{0<m<1}\\{2<n<3}\end{array}\right.$,那么甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.公差为d的等差数列{an}的前n项和为Sn,若S2=8,S3=15,则d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A=a+2,B=a2-a+5,试比较A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象过点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N*),则a2011的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列说法及计算不正确的是①③.
①6名学生争夺3项冠军,冠军的获得情况共有36种.
②在某12人的兴趣小组中,有女生5人,现要从中任意选取6人参加2012年数学奥赛,用x表示这6人中女生人数,则P(X=3)=$\frac{C_5^3C_7^3}{{C_{12}^6}}$.
③|r|≤1,并且|r|越接近1,线性相关程度越弱;|r|越接近0,线性相关程度越强.
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|x
(1)将f(x)写成分段函数形式(分x≥2和x<2两段);
(2)作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),直线l过点 A(a,0),B(0,b),该双曲线的左焦点F1到直线l的距离等于该双曲线的短轴长的$\frac{2}{3}$.
(1)求该双曲线的离心率;
(2)若点F1到左准线的距离与它到渐近线的距离和是$\frac{16}{3}$+4$\sqrt{2}$,求该双曲线.

查看答案和解析>>

同步练习册答案