精英家教网 > 高中数学 > 题目详情
4.设甲:m,n满足$\left\{\begin{array}{l}{2<m+n<4}\\{0<mn<3}\end{array}\right.$,乙:m,n满足$\left\{\begin{array}{l}{0<m<1}\\{2<n<3}\end{array}\right.$,那么甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 通过举反例可得,当甲成立时,不能推出乙成立,利用不等式的性质可以由乙成立推出甲成立,从而得到结论.

解答 解:当甲成立时,不能推出乙成立,
如 m=3且 n=$\frac{1}{2}$时,尽管满足甲,但不满足乙.
但由乙成立,由不等式的性质能推出甲成立,
故甲是乙的必要不充分条件,
故选:B.

点评 本题主要考查充分条件、必要条件、充要条件的定义和判断方法,不等式的基本性质的应用,通过举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x3+bx2+cx+1,若f(5)=-1,则函数 y=f(x)零点的个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若关于x的不等式$\frac{x-a}{x+1}$>0的解集为(-∞,-1)∪($\frac{1}{2}$,+∞),则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.二次函数f(x)=x2-6x+3,则以下判断错误的是(  )
A.f(5)>f(4)B.f(2)=f(4)C.f(0)<f(-1)D.f(2)<f($\sqrt{15}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知lga、lgb是方程x2-4x+1=0的两个根,则lg2$\frac{a}{b}$的值是(  )
A.14B.15C.13D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x满足不等式log${\;}_{\frac{1}{4}}$x2+log2(3x-2)≥0,求函数f(x)=(log2$\frac{x}{4}$)•(log2$\frac{x}{2}$)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2asin(2x+$\frac{π}{6}$)+a+b(a>0),当x∈[0,$\frac{π}{2}$]时,f(x)最大值是1,最小值是-3.
(1)求a,b的值
(2)求f(x)的单调减区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于定义域D的函数f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],则称f(x)为在D上的闭函数.
(Ⅰ)求闭函数y=x3符合条件②的区间[a,b];
(Ⅱ)判断函数f(x)=$\frac{3}{4}$x+$\frac{1}{x}$(x>0)是否为闭函数?并说明理由;
(Ⅲ)判断函数y=k+$\sqrt{x+2}$是否为闭函数?若是闭函数,求实数K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线l的斜率是(  )
A.6B.$\frac{2}{3}$C.$-\frac{3}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

同步练习册答案