精英家教网 > 高中数学 > 题目详情
15.公差为d的等差数列{an}的前n项和为Sn,若S2=8,S3=15,则d=2.

分析 根据等差数列的前n项和公式,列出方程组,求出公差d的值.

解答 解:等差数列{an}中,S2=8,S3=15,
∴$\left\{\begin{array}{l}{{2a}_{1}+d=8}\\{{3a}_{1}+3d=15}\end{array}\right.$,
解得a1=3,d=2.
故答案为:2.

点评 本题考查了等差数列的前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若关于x的不等式$\frac{x-a}{x+1}$>0的解集为(-∞,-1)∪($\frac{1}{2}$,+∞),则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2asin(2x+$\frac{π}{6}$)+a+b(a>0),当x∈[0,$\frac{π}{2}$]时,f(x)最大值是1,最小值是-3.
(1)求a,b的值
(2)求f(x)的单调减区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于定义域D的函数f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],则称f(x)为在D上的闭函数.
(Ⅰ)求闭函数y=x3符合条件②的区间[a,b];
(Ⅱ)判断函数f(x)=$\frac{3}{4}$x+$\frac{1}{x}$(x>0)是否为闭函数?并说明理由;
(Ⅲ)判断函数y=k+$\sqrt{x+2}$是否为闭函数?若是闭函数,求实数K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的有(  )
①方向相同的向量叫相等向量;
②零向量的长度为0;
③共线向量是在同一条直线上的向量;
④零向量是没有方向的向量;
⑤共线向量不一定相等;
⑥平行向量方向相同.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一个周期内,当x=$\frac{π}{4}$时y取最大值1,当x=$\frac{7π}{12}$时,y取最小值-1.
(1)求函数的解析式y=f(x);
(2)求函数的对称轴、对称中心、单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边所在的直线过点P(4,-3),则cosα的值为(  )
A.4B.-3C.±$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆${O_2}:{(x-3)^2}+{(y+3)^2}=4$关于直线l:ax+4y-6=0对称,则直线l的斜率是(  )
A.6B.$\frac{2}{3}$C.$-\frac{3}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}中,a2a3a6a9a10=32,则$\frac{({a}_{9})^{2}}{{a}_{12}}$=2.

查看答案和解析>>

同步练习册答案