分析 由从点A到点B正好经过了半个周期,求出ω,把A、B的坐标代入函数解析式求出sinφ的值,再根据五点法作图,求得φ 的值.
解答 解:根据函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的图象,且$A({\frac{π}{2},1}),B({π,-1})$,
可得从点A到点B正好经过了半个周期,即$\frac{1}{2}•\frac{2π}{ω}$=π-$\frac{π}{2}$,∴ω=2.
再把点A、B的坐标代入可得 2sin(2•$\frac{π}{2}$+φ )=-2sinφ=1,2sin(2•π+φ )=2sinφ=-1,
∴sinφ=-$\frac{1}{2}$,∴φ=2kπ-$\frac{π}{6}$,或φ=2kπ-$\frac{5π}{6}$,k∈Z.
再结合五点法作图,可得φ=-$\frac{5π}{6}$,
故答案为:$-\frac{5π}{6}$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6条 | B. | 7条 | C. | 8条 | D. | 9条 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com