精英家教网 > 高中数学 > 题目详情
6.一辆邮车每天从A地往B地运送邮件,沿途(包括A,B)共有8站,从A地出发时,装上发往后面7站的邮件各一个,到达后面各站后卸下前面发往该站的邮件,并装上发往后面各站的邮件各一个,试写出邮车在各站装卸完毕后剩余邮件个数所成的数列,画出该数列的图象,并判断该数列的单调性.

分析 由题意列出各个站点的邮件个数,画出图象,然后判断单调性即可.

解答 解:由题意可知:
站点        卸下邮件数     增加邮件数    合计
A               0                       7          7
2               1                        6          12
3               2                        5          15
4               3                        4          16
5               4                        3          15
6               5                        2          12
7               6                        1          7
B               7                        0          0
通项公式表示,an=-n2+8n,n为站点编号,n∈N*,且n∈[1,8].
图象如图:
由图象可知,当n≤4,n∈N+数列是增数列,4<n≤8,数列是减数列.

点评 本题考查数列的与函数相结合,数列的函数特征,函数的单调性以及图象的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,四边形ABED是边长为2的菱形,△CDE为正三角形,B,E,C三点共线,现将△ABD沿BD折起形成三棱锥A′-BCD.
(1)求证:A′E⊥BD;
(2)若平面A′BD⊥平面ABCD,求直线CD与平面A′BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在直三棱柱ABC-A1B1C1中,BC=CC1=2a,∠CAB=90°,AC=$\sqrt{2}$a.则点B到平面AB1C的距离为$\frac{{2\sqrt{3}a}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正四棱锥S-ABCD中,SA=AB=2,则直线AC与平面SBC所成角的正弦值为(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,E为CB1与BC1的交点.
(1)求证:DE∥平面ACC1A1
(2)求直线BC1与平面DB1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设z1、z2是实系数方程z2+tz+t+3=0(t∈R)的两个虚数根,复数α满足αz1+z2=0.
(1)求复数α的模|α|;
(2)求证:α+$\frac{1}{α}$为实数,并求α+$\frac{1}{α}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.8人排成一排照相,分别求下列条件下的照相方式种数
(1)其中甲、乙相邻,丙、丁相邻;
(2)其中甲、乙不相邻,丙、丁不相邻.
(要求写出解答过程,并用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2cos($\frac{x}{2}$+$\frac{π}{6}$)+3.
(1)画出该函数在一个周期内的图象;
(2)求函数的最大值,并写出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知点A(-2,0),点P是⊙B:(x-2)2+y2=36上任意一点,线段AP的垂直平分线交BP于点Q,点Q的轨迹记为曲线C.
(1)求曲线C的方程;
(2)已知⊙O:x2+y2=r2(r>0)的切线l总与曲线C有两个交点M、N,当∠MON>90°,求r2的取值范围.

查看答案和解析>>

同步练习册答案