精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2cos($\frac{x}{2}$+$\frac{π}{6}$)+3.
(1)画出该函数在一个周期内的图象;
(2)求函数的最大值,并写出相应的x的值.

分析 (1)根据“五点法”即可画出函数在长度为一个周期的闭区间上的简图;
(2)根据三角函数性质,即可得到结论.

解答 解:(1)取值

$\frac{x}{2}$+$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
x$-\frac{π}{3}$$\frac{2π}{3}$$\frac{5π}{3}$$\frac{8π}{3}$$\frac{11π}{3}$
y53135
作图:
(2)当cos($\frac{x}{2}$+$\frac{π}{6}$)=1,即$\frac{x}{2}$+$\frac{π}{6}$=2kπ,即x=4kπ$-\frac{π}{3}$,k∈Z,
此时函数取得最大值f(x)=2+3=5.
此时对应的x的集合为{x|x=4kπ$-\frac{π}{3}$,k∈Z}.

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在正方体ABCD-A1B1C1D1中,O是底面ABCD对角线的交点.
(Ⅰ)求证:BD⊥平面ACC1A1
(Ⅱ)求直线BC与平面ACC1A1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一辆邮车每天从A地往B地运送邮件,沿途(包括A,B)共有8站,从A地出发时,装上发往后面7站的邮件各一个,到达后面各站后卸下前面发往该站的邮件,并装上发往后面各站的邮件各一个,试写出邮车在各站装卸完毕后剩余邮件个数所成的数列,画出该数列的图象,并判断该数列的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在棱长都相等的四面体ABCD中,点E是棱AD的中点.
(1)设侧面ABC与底面BCD所成角为α,求tanα.
(2)设CE与底面BCD所成角为β,求cosβ.
(3)在直线BC上是否存在着点F,使直线AF与CE所成角为90°,若存在,试确定F点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果一个数列是等差数列,将它的各项取绝对值后仍是等差数列,则该数列(  )
A.是常数列B.公差大于零C.公差小于零D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足x2+y2-4x+1=0.
(1)求x2+y2的最值;
(2)求$\frac{y}{x+1}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数a、b、c满足a+b+c=2,a2+b2+c2=4,且a>b>c,不等式ln(a2+2a)-a≥M恒成立,则M的最大值是ln$\frac{16}{9}$-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在三棱锥P-ABC中,AC=BC=AP=BP=$\sqrt{2}$,PC=$\sqrt{3}$,AB=2.
(1)求证:PC⊥AB;
(2)求二面角A-PB-C的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面是正方形,侧棱PD⊥底面ABCD,点E是棱PB的中点.
(Ⅰ)求证:AC⊥PB
(Ⅱ)若PD=2,AB=$\sqrt{2}$,求直线AE和平面PDB所成的角.

查看答案和解析>>

同步练习册答案