精英家教网 > 高中数学 > 题目详情
8.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

分析 运用线段的垂直平分线的性质定理可得|PF2|=|F1F2|=2c,设PF1的中点为M,由中位线定理可得|MF2|=2a,再由勾股定理和双曲线的定义可得4b-2c=2a,结合a,b,c的关系,可得a,c的关系,即可得到双曲线的离心率.

解答 解:由线段PF1的垂直平分线恰好过点F2
可得|PF2|=|F1F2|=2c,
由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,
可得|OA|=a,
设PF1的中点为M,由中位线定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|=$\sqrt{4{c}^{2}-4{a}^{2}}$=2b,
即有|PF1|=4b,
由双曲线的定义可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=a+c,
即有4b2=(a+c)2
即4(c2-a2)=(a+c)2
可得a=$\frac{3}{5}$c,
所以e=$\frac{c}{a}$=$\frac{5}{3}$.
故选:C.

点评 本题考查双曲线的定义、方程和性质,考查平面几何中垂直平分线定理和中位线定理的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$cos2ωx(ω>0)的最小正周期为2π
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,sinB,sinA,sinC成等比数列,求此时f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=3sin(2x-$\frac{π}{3}$)的图象,经过下列哪个平移变换,可以得到函数y=3sin2x的图象(  )
A.向左平移$\frac{π}{6}$B.向右平移 $\frac{π}{6}$C.向左平移 $\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(2-i)z=1-i(i为虚数单位),则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动员P过定点$M(-\sqrt{3},0)$且与圆N:${(x-\sqrt{3})^2}+{y^2}=16$相切,记动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合U={1,2,3,4,5},集合A={x∈Z|x2-5x+4<0},集合B={1,2},则(∁UA)∩B=(  )
A.{1}B.{1,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后关于y轴对称,则f(x)在区间$[{-\frac{π}{2},0}]$上的最小值为(  )
A.-1B.$\sqrt{3}$C.$-\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AB=BC=2,∠ACB=30°,∠C1CB=120°,BC1⊥A1C,E为AC的中点.
(1)求证:A1C⊥平面C1EB;
(2)求二面角A1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{{\begin{array}{l}{x≤-1}\\{x-y≥-2}\\{x+y+1≥0}\end{array}}\right.$,则目标函数z=3x+y的取值范围为(  )
A.[-4,-2]B.[-4,+∞)C.[-3,+∞)D.[-3,-2]

查看答案和解析>>

同步练习册答案