精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后关于y轴对称,则f(x)在区间$[{-\frac{π}{2},0}]$上的最小值为(  )
A.-1B.$\sqrt{3}$C.$-\sqrt{3}$D.-2

分析 利用函数y=Asin(ωx+φ)的图象变换规律,余弦函数的定义域和值域,求得f(x)在区间$[{-\frac{π}{2},0}]$上的最小值.

解答 解:知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)=2cos(2x-φ+$\frac{π}{3}$),(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后,
可得y=2cos(2x-$\frac{π}{6}$-φ+$\frac{π}{3}$)=2cos(2x-φ+$\frac{π}{6}$) 的图象,
再根据所得图象关于y轴对称,可得-φ+$\frac{π}{6}$=kπ,k∈Z,故φ=$\frac{π}{6}$,f(x)=2cos(2x+$\frac{π}{6}$).
在区间$[{-\frac{π}{2},0}]$上,2x+$\frac{π}{6}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],cos(2x+$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
故f(x) 的最小值为2•(-$\frac{\sqrt{3}}{2}$)=-$\sqrt{3}$,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为8800元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.为了活跃学生课余生活,我校高三年级部计划使用不超过1200元的资金购买单价分别为90元、120元的排球和篮球.根据需要,排球至少买3个,篮球至少买2个,并且排球的数量不得超过篮球数量的2倍,则能买排球和篮球的个数之和的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知关于x的方程sinx+cosx=m在[0,π]有两个不等的实根,则m的一个值是(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}是公比大于1的等比数列,Sn为其前n项和,已知S3=7,a1+3,3a2,a3+4构成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an+lnan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知z=(m+4)+(m-2)i在复平面内对应的点在第三象限,则实数m的取值范围是(  )
A.(-4,2)B.(-2,4)C.(2,+∞)D.(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=lnx-x3+2ex2-ax,a∈R,其中e为自然对数的底数.
(1)若f(x)在x=e处的切线的斜率为e2,求a;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知从圆C:(x+1)2+(y-2)2=2外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取最小值时点P的坐标为(-$\frac{3}{10}$,$\frac{3}{5}$).

查看答案和解析>>

同步练习册答案