精英家教网 > 高中数学 > 题目详情
15.已知关于x的方程sinx+cosx=m在[0,π]有两个不等的实根,则m的一个值是(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

分析 由于x的方程sinx+cosx=m得到$\sqrt{2}$sin(x+$\frac{π}{4}$)=m,分别画出y=$\sqrt{2}$sin(x+$\frac{π}{4}$),x∈[0,π],和y=m,的图象,由图象可得答案

解答 解:于x的方程sinx+cosx=m在[0,π]有两个不等的实根,
则$\sqrt{2}$sin(x+$\frac{π}{4}$)=m,
分别画出y=$\sqrt{2}$sin(x+$\frac{π}{4}$),x∈[0,π],和y=m,
由图象可得,若关于x的方程sinx+cosx=m在[0,π]有两个不等的实根,
则m的范围为[1,$\sqrt{2}$),
故选:A

点评 本题主要考查两角和差的正弦公式、正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.参数方程为$\left\{{\begin{array}{l}{x={t^2}}\\{y=2t}\end{array}}\right.$(t为参数)的曲线的焦点坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,直线l的参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数) 以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,曲线C的极坐标方程为ρ=4cosθ
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C交于点A,B,且|AB|=$\sqrt{14}$,求直线的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动员P过定点$M(-\sqrt{3},0)$且与圆N:${(x-\sqrt{3})^2}+{y^2}=16$相切,记动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠ABC=60°,点E满足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后关于y轴对称,则f(x)在区间$[{-\frac{π}{2},0}]$上的最小值为(  )
A.-1B.$\sqrt{3}$C.$-\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(Ⅰ)求直线l的普通方程与圆C的直角坐标方程;
(Ⅱ)点P、Q分别在直线l和圆C上运动,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x>0,y>0,x+y=1,则$\frac{x^2}{x+2}+\frac{y^2}{y+1}$的最小值为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C的两个焦点坐标分别是(-2,0),(2,0),并且经过$P({2,\frac{{\sqrt{6}}}{3}})$.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l,直线l与椭圆C相交于A、B两点,当△OAB的面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案