精英家教网 > 高中数学 > 题目详情
11.为了活跃学生课余生活,我校高三年级部计划使用不超过1200元的资金购买单价分别为90元、120元的排球和篮球.根据需要,排球至少买3个,篮球至少买2个,并且排球的数量不得超过篮球数量的2倍,则能买排球和篮球的个数之和的最大值是12.

分析 设买排球x个,篮球y个,由题意列关于x,y的不等式组,作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:设买排球x个,篮球y个,买排球和篮球的个数之和z=x+y.
则$\left\{\begin{array}{l}{x≥3}\\{y≥2}\\{x≤2y}\\{90x+120y≤1200}\end{array}\right.$,
由约束条件作出可行域如图:

联立$\left\{\begin{array}{l}{x=2y}\\{3x+4y=40}\end{array}\right.$,解得A(8,4),
化目标函数z=x+y为y=-x+z,由图可知,
当直线y=-x+z过点A时,直线在y轴上的截距最大,z有最大值为12.
故答案为:12.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sin(ωx+θ),其中ω>0,θ∈(0,$\frac{π}{2}$),f(x1)=f(x2)=0,|x2-x1|min=$\frac{π}{2}$.f(x)=f($\frac{π}{3}-x$),将f(x)的图象向左平移$\frac{π}{6}$个单位得G(x),则G(x)的单调递减区间是(  )
A.[kπ,kπ+$\frac{π}{2}$]B.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]C.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$]D.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x∈R,x2-x+1>0”的否定是(  )
A.?x∈R,x2-x+1≤0B.?x∈R,x2-x+1<0
C.?x0∈R,x02-x0+1≤0D.?x0∈R,x02-x0+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=3sin(2x-$\frac{π}{3}$)的图象,经过下列哪个平移变换,可以得到函数y=3sin2x的图象(  )
A.向左平移$\frac{π}{6}$B.向右平移 $\frac{π}{6}$C.向左平移 $\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,直线l的参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数) 以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,曲线C的极坐标方程为ρ=4cosθ
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C交于点A,B,且|AB|=$\sqrt{14}$,求直线的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足(2-i)z=1-i(i为虚数单位),则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动员P过定点$M(-\sqrt{3},0)$且与圆N:${(x-\sqrt{3})^2}+{y^2}=16$相切,记动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后关于y轴对称,则f(x)在区间$[{-\frac{π}{2},0}]$上的最小值为(  )
A.-1B.$\sqrt{3}$C.$-\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x、y都有f(x•y)=f(x)+f(y),若数列{an}的前n项和为Sn,且f(an)=f(Sn+2)-f(4)(n∈N*),则数列{an}的通项公式an=$\frac{1}{2}$×($\frac{4}{3}$)n

查看答案和解析>>

同步练习册答案