精英家教网 > 高中数学 > 题目详情
3.若命题“?t∈R,t2-2t-a<0”是假命题,则实数a的取值范围是(-∞,-1].

分析 命题“?t∈R,t2-2t-a<0”是假命题,则?t∈R,t2-2t-a≥0是真命题,可得△≤0.

解答 解:命题“?t∈R,t2-2t-a<0”是假命题,
则?t∈R,t2-2t-a≥0是真命题,
∴△=4+4a≤0,解得a≤-1.
∴实数a的取值范围是(-∞,-1].
故答案为:(-∞,-1].

点评 本题考查了方程与不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)是定义在 R上的奇函数,且当x>0时,f(x)=2x-1,则f(f(-1))的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,A1C=BC,B1C1∥BC,且${B_1}{C_1}=\frac{1}{2}BC$.
(I)求证:A1B⊥B1C;
(II)求证:AB1∥平面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{an}称为斐波那契数列,则$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2f(2-x)-x2+5x-5,则曲线y=f(x)在点(1,f(1))处的切线方程为(  )
A.y=xB.y=-2x+3C.y=-3x+4D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a,b均为非负实数,且a+b=1,则$\frac{1}{a+2b}$+$\frac{4}{2a+b}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一只袋中装有编号为1,2,3,…,n的n个小球,n≥4,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为ξn,如ξ4=3,ξ5=3或4,ξ6=3或4或5,记ξn的数学期望为f(n).
(1)求f(5),f(6);
(2)求f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知等比数列{an}的前n项和为Sn,a1=1,S6=9S3
(I )求{an}的通项公式
(II)设bn=1+log2an,求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q为真,则实数m的取值范围是(  )
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

同步练习册答案