精英家教网 > 高中数学 > 题目详情
11.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{an}称为斐波那契数列,则$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=(  )
A.0B.-1C.1D.2

分析 利用an+2=an+1+an,结合叠加法,即可得出结论.

解答 解:a1a3-a22=1×2-1=1,
a2a4-a32=1×3-22=-1,
a3a5-a42=2×5-32=1,

a8a10-a92=1
∴$\sum_{i=1}^{8}({a}_{i}{a}_{i+2})$-$\sum_{i=1}^{8}{{a}_{i+1}}^{2}$=(a1a3+a2a4+…a8a10)-(a22+a32+…+a92)=0
故选:A

点评 本题考查斐波那契数列,考查叠加法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在△ABC中,内角A、B、C的对边分别为a、b、c,已知$\frac{{4\sqrt{3}}}{3}{S_{△ABC}}={b^2}+{c^2}-{a^2}$,则角A=$\frac{π}{3}$(用弧度制表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为$\frac{π}{3}$,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为1-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果x,y满足$\left\{\begin{array}{l}{x-2y-4≤0}\\{x+y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的取值范围是(  )
A.[0,2)B.[0,2]C.[-1,$\frac{1}{2}$]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{3}$x2+ax2+bx-$\frac{5}{6}$(a>0,b∈R),f(x)在x=x1和x=x2处取得极值,且|x1-x2|=$\sqrt{5}$,曲线y=f(x)在(1,f(1))处的切线与直线x+y=0垂直.
(Ⅰ)求f(x)的解析式; 
(Ⅱ)证明关于x的方程(k2+1)ex-1-kf′(x)=0至多只有两个实数根(其中f′(x)是f(x)的导函数,e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:
X123567
y605553464541
(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题“?t∈R,t2-2t-a<0”是假命题,则实数a的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:函数f(x)=|cos2x-sinxcosx-$\frac{1}{2}$|的最小正周期为π;命题q:函数f(x)=ln$\frac{3+x}{3-x}$的图象关于原点中心对称,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},则A∪B=(  )
A.[0,1)B.(-1,2)C.(-1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

同步练习册答案