精英家教网 > 高中数学 > 题目详情
8.若a,b均为非负实数,且a+b=1,则$\frac{1}{a+2b}$+$\frac{4}{2a+b}$的最小值为3.

分析 观察所求,利用换元变形为在m+n=3的前提下求$\frac{1}{m}+\frac{4}{n}$的最小值.

解答 解:设a+2b=m,2a+b=n,则m+n=3,原式变形为:$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{3}$(m+n)($\frac{1}{m}+\frac{4}{n}$)=$\frac{1}{3}$[5+$\frac{n}{m}+\frac{4m}{n}$]$≥\frac{1}{3}$(5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$)=3;
当且仅当$\frac{n}{m}=\frac{4m}{n}$时等号成立;
故答案为:3.

点评 本题考查了利用基本不等式求代数式的最小值;关键是正确变形为能够利用基本不等式的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{x^2}-1}}{{lnx-a{x^2}}}(a∈$R).
(1)当a=0时,求函数 f(x)的单调区间;
(2)若对于任意x∈(1,e),不等式f(x)>1恒成立,求 a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果x,y满足$\left\{\begin{array}{l}{x-2y-4≤0}\\{x+y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的取值范围是(  )
A.[0,2)B.[0,2]C.[-1,$\frac{1}{2}$]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:
X123567
y605553464541
(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题“?t∈R,t2-2t-a<0”是假命题,则实数a的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知AB,CD是圆O两条相互垂直的直径,弦DE交AB的延长线于点F,若DE=24,EF=18,求OE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:函数f(x)=|cos2x-sinxcosx-$\frac{1}{2}$|的最小正周期为π;命题q:函数f(x)=ln$\frac{3+x}{3-x}$的图象关于原点中心对称,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线l:x+λy+2-3λ=0(λ∈R)恒过定点(-2,3),P(1,1)到该直线的距离最大值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在面积为S的三角形ABC的边AB上任意取一点P,则三角形PBC的面积大于$\frac{S}{4}$的概率为$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案